
The Static Pattern Calculus

Term Reduction



The Book

• Barry Jay “Pattern Calculus: Computing with Functions and Structures”, 
Springer, 2009.

• Part 1: Terms

• Part 2: Types

• Part 3: Bondi programming language



Static Pattern Calculus Syntax

patterns

p ::= 
          x               (matchable symbol)
          c               (constructor)
          p p            (application)

terms

t ::=
          x                (variable)
          c                (constructor)
          t t               (application)
          p → t         (case)  



Static Pattern Calculus Examples

• (x → x) A    ➾    A

• (Pair x y → x) (Pair A B)    ➾    A

• (Pair x y → Pair y x) (Pair A B)    ➾    Pair B A

• (Pair x y → x) A    ➾    NoMatch

• (x y → x) (A B)    ➾    A

• (x y → y x) (A B)    ➾    B A

• (x y z → y) (A B C)    ➾    B



Static Pattern Calculus Examples

• (x y → y) (A B C)    ➾    C

• (x y → y) ((x → x) (A B))    ➾    B

• (x y → y) ((x → x) A)     ➾    NoMatch

• (x x → x) (A A)    ➾    NoMatch



Linear patterns

• What happens if a pattern has more than one occurrence of the same 
matchable symbol? e.g. 

(Pair x x → x) (Pair U U)

• Hard to determine equality if U is a case (a term denoting a function).

• “nonlinearity can break confluence of reduction” (page 35) (how so?)

• For data structures, equality can be defined in other ways.



Linear patterns

• For the reasons on previous slide, non-linear patterns are deemed to always 
fail.

• Why not just make them a syntax error (as they are in Haskell)?

‣ In the Dynamic Pattern Calculus, patterns can be computed.

‣ In that context, syntactic checks for linearity will (unjustly) prohibit 
programs where non-linear patterns reduce to linear ones.

‣ So the approach of the Static Calculus is motivated by future issues in 
the Dynamic Calculus.



Substitutions

• σ = { u1 / x1 ... un / xn }

• Partial function from symbols to terms.

• { u / x } reads as “replace u for x”

• Usual rules apply regarding avoiding variable capture, e.g.

(x → (y → x y)) y      ➾      y’ → y y’



Static matching

《t, p》reads “match term t with pattern p” (book uses different brackets)

《u, x》=  some {u / x}

《c, c》=  some { }

《u v, p q》=  {u / p} ⊎ {v / q},         if u v is a compound

《u, p》 =  none,                                otherwise, if u is matchable

《u, p》 =  undefined,                        otherwise



Static matching

《u, x》=  some {u / x}

《c, c》=  some { }

《u v, p q》=  {u / p} ⊎ {v / q},     if u v is a compound

《u, p》 =  none,                            otherwise, if u is matchable

《u, p》 =  undefined,                    otherwise

disjoint union
ensures linearity



《u, x》=  some {u / x}

《c, c》=  some { }

《u v, p q》=  {u / p} ⊎ {v / q},     if u v is a compound

《u, p》 =  none,                            otherwise, if u is matchable

《u, p》 =  undefined,                    otherwise

Static matching

ensure term is not
a redex



Matchable, data structure, compound

compound

k ::= d t                (data structure applied to term)

data structure

d ::=
          c                (constructor)
          k                (compound)

matchable

m ::= 
          p → t         (case)
          d                (data structure)



Reduction

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
   reduct1 <- reduce t1
   case reduct1 of
      Case pattern body ->
         case match pattern t2 of
            None -> return noMatch
            Some subst -> do
               newBody <- applySubst subst body
               reduce newBody
            Undefined -> do
               reduct2 <- reduce t2
               reduce $ Application reduct1 reduct2
      other -> return $ Application reduct1 t2

reduce other = return other



Reduction

apply the static matching
rule from before

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
   reduct1 <- reduce t1
   case reduct1 of
      Case pattern body ->
         case match pattern t2 of
            None -> return noMatch
            Some subst -> do
               newBody <- applySubst subst body
               reduce newBody
            Undefined -> do
               reduct2 <- reduce t2
               reduce $ Application reduct1 reduct2
      other -> return $ Application reduct1 t2

reduce other = return other



Reduction

matching failed 

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
   reduct1 <- reduce t1
   case reduct1 of
      Case pattern body ->
         case match pattern t2 of
            None -> return noMatch
            Some subst -> do
               newBody <- applySubst subst body
               reduce newBody
            Undefined -> do
               reduct2 <- reduce t2
               reduce $ Application reduct1 reduct2
      other -> return $ Application reduct1 t2

reduce other = return other



Reduction

matching succeeded 

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
   reduct1 <- reduce t1
   case reduct1 of
      Case pattern body ->
         case match pattern t2 of
            None -> return noMatch
            Some subst -> do
               newBody <- applySubst subst body
               reduce newBody
            Undefined -> do
               reduct2 <- reduce t2
               reduce $ Application reduct1 reduct2
      other -> return $ Application reduct1 t2

reduce other = return other



reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
   reduct1 <- reduce t1
   case reduct1 of
      Case pattern body ->
         case match pattern t2 of
            None -> return noMatch
            Some subst -> do
               newBody <- applySubst subst body
               reduce newBody
            Undefined -> do
               reduct2 <- reduce t2
               reduce $ Application reduct1 reduct2
      other -> return $ Application reduct1 t2

reduce other = return other

Reduction

argument needed to be
reduced, try matching again



Theorems

• Reduction is confluent (if a term has a normal form, then it is unique).

• Reduction cannot get stuck (every term of the form ‘(p → t) u’ is reducible).



Fixed points

Ω = Rec x → x (Rec x)

FIX = f → Ω (Rec (x → f (Ω x)))

(you could also define FIX as it is done in the Lambda Calculus, but on page 37 
there is promise of a type for Rec in part 2 of the book).



Extensions

• Sequence of cases:

p1 → t1 | p2 → t2 | ... | pn → tn

• For example:

Pair x y → x | Triple x y z → x | Quad w x y z → w

• Reduction:

( p → s | r ) u     ⟶     σ s              if 《u, p》 =  some σ

( p → s | r ) u     ⟶      r u               if 《u, p》 =  none



Generic programming

fold f g = x y → f (fold f g x) (fold f g y) | x → g x

size = fold plus (x → 1)

(assuming some sugar for named (possibly recursive) definitions).


