The Static Pattern Calculus

Term Reduction

The Book

e Barry Jay “Pattern Calculus: Computing with Functions and Structures”,
Springer, 20009.

e Part 1: Terms
e Part 2: Types

¢ Part 3: Bondi programming language

Static Pattern Calculus Syntax

patterns
p =
X (matchable symbol)
C (constructor)
o)) (application)
terms
t=
X (variable)
C (constructor)
tt (application)

p—t (case)

Static Pattern Calculus Examples

e (Pairxy = x)(ParAB) = A

* (Pairxy — Pairy x) (Pair AB) = PairBA

e (Pairxy - x)A = NoMatch

*xy—x)(AB) = A

*xy—2yx)(AB) = BA

*xyz—y)(ABC) = B

Static Pattern Calculus Examples

*xy—y)(ABC) = C

*xy—=»y)x—x)(AB) = B

e(xy—Vy)(x—x)A) = NoMatch

e (xx—x)(AA) = NoMatch

Linear patterns

¢ \What happens if a pattern has more than one occurrence of the same
matchable symbol? e.g.

(Pair x x = x) (Pair U U)

e Hard to determine equality if U is a case (a term denoting a function).

¢ “nonlinearity can break confluence of reduction” (page 35) (how so0?)

¢ For data structures, equality can be defined in other ways.

Linear patterns

¢ For the reasons on previous slide, non-linear patterns are deemed to always
fail.

¢ \Why not just make them a syntax error (as they are in Haskell)?

» In the Dynamic Pattern Calculus, patterns can be computed.

» In that context, syntactic checks for linearity will (unjustly) prohibit
programs where non-linear patterns reduce to linear ones.

» So the approach of the Static Calculus is motivated by future issues in
the Dynamic Calculus.

Substitutions

eo0={UuU1/X1...Un/ Xn}

¢ Partial function from symbols to terms.

e {u/x}reads as “replace u for x”

e Usual rules apply regarding avoiding variable capture, e.q.

X=>((y—=xy)y = y-oyy

Static matching

(t, p) reads “match term t with pattern p” (book uses different brackets)

{u, x) = some {u/x}

{c, c) = some{}

fuv,pq) = fu/pt W {v/ql, if u v is a compound
{u, p) = none, otherwise, if u is matchable

{u, p) = undefined, otherwise

Static matching

disjoint union
ensures linearity

{u, x) = some {u/x}
{c, c) = some{} /
fuv,pq) = {u/pyW {v/q}, ifuvisacompound

{u, p)» = none, otherwise, if U is matchable

{u, p) = undefined, otherwise

Static matching

ensure term is not
a redex

{u, x) = some {u/x}

{c, c) = some{}

fuv,pq) = {u/pl W {v/q}, |ifuvisacompound
{u, p) = none, otherwise, if u is matchable

{u, p) = undefined, otherwise

Matchable, data structure, compound

compound

k:=dt (data structure applied to term)

data structure

d:=
C (constructor)
Kk (compound)
matchable
m ::=
p—t (case)

d (data structure)

Reduction

reduce :: Term -> Reduce Term

reduce (Application tl t2) = do
reductl <- reduce tl
case reductl of
Case pattern body ->
case match pattern t2 of
None -> return noMatch
Some subst -> do
newBody <- applySubst subst body
reduce newBody
Undefined -> do
reduct2 <- reduce t2
reduce $ Application reductl reduct2
other -> return $ Application reductl t2

reduce other = return other

Reduction

reduce :: Term -> Reduce Term . .
apply the static matching

rule from before

reduce (Application tl t2) = do

reductl <- reduce tl
case reductl of
Case pattern body ->
case match pattern t2 of
None -> return noMatch
Some subst -> do
newBody <- applySubst subst body
reduce newBody
Undefined -> do
reduct2 <- reduce t2
reduce $ Application reductl reduct2
other -> return $ Application reductl t2

reduce other = return other

Reduction

reduce :: Term -> Reduce Term

matching failed

reduce (Application tl t2) = do

reductl <- reduce tl
case reductl of
Case pattern body ->
case match pattern t2 of
None -> return noMatch
Some subst -> do
newBody <- applySubst subst body
reduce newBody
Undefined -> do
reduct2 <- reduce t2
reduce $ Application reductl reduct2
other -> return $ Application reductl t2

reduce other = return other

Reduction

reduce :: Term -> Reduce Term

matching succeeded

reduce (Application tl t2) = do

reductl <- reduce tl
case reductl of
Case pattern body ->
case match pattern t2 of
None -> return noMatch
Some subst -> do
newBody <- applySubst subst body
reduce newBody
Undefined -> do
reduct2 <- reduce t2
reduce $ Application reductl reduct2
other -> return $ Application reductl t2

reduce other = return other

Reduction

reduce :: Term -> Reduce Term
argument needed to be

reduced, try matching again

reduce (Application tl t2) = do

reductl <- reduce tl
case reductl of
Case pattern body ->
case match pattern t2 of
None -> return noMatch
Some subst -> do
newBody <- applySubst subst body
reduce newBody v
Undefined -> do
reduct2 <- reduce t2
reduce $ Application reductl reduct2
other -> return $ Application reductl t2

reduce other = return other

Theorems

e Reduction is confluent (if a term has a normal form, then it is unique).

e Reduction cannot get stuck (every term of the form ‘(p — t) u’ is reducible).

Fixed points

Q2 = Rec x = x (Rec x)

FIX=f > Q (Rec (x = f(Q2 X))

(you could also define FIX as it is done in the Lambda Calculus, but on page 37
there is promise of a type for Rec in part 2 of the book).

Extensions

e Sequence of cases:
p1 = t1|p2 = t2]...] pn — tn
® For example:

Pairxy = x| Triplexyz = x| Quadwxyz = w

e Reduction:

some O

(p—~s|r)u — Os if €u, p)

(p—s|r)u — ru if {u, p) = none

Generic programming

foldfg=xy = f(foldfgx) (foldfgy)|x — gx

size = fold plus (x — 1)

(assuming some sugar for named (possibly recursive) definitions).

