
The Static Pattern Calculus

Term Reduction

The Book

• Barry Jay “Pattern Calculus: Computing with Functions and Structures”,
Springer, 2009.

• Part 1: Terms

• Part 2: Types

• Part 3: Bondi programming language

Static Pattern Calculus Syntax

patterns

p ::=
 x (matchable symbol)
 c (constructor)
 p p (application)

terms

t ::=
 x (variable)
 c (constructor)
 t t (application)
 p → t (case)

Static Pattern Calculus Examples

• (x → x) A ➾ A

• (Pair x y → x) (Pair A B) ➾ A

• (Pair x y → Pair y x) (Pair A B) ➾ Pair B A

• (Pair x y → x) A ➾ NoMatch

• (x y → x) (A B) ➾ A

• (x y → y x) (A B) ➾ B A

• (x y z → y) (A B C) ➾ B

Static Pattern Calculus Examples

• (x y → y) (A B C) ➾ C

• (x y → y) ((x → x) (A B)) ➾ B

• (x y → y) ((x → x) A) ➾ NoMatch

• (x x → x) (A A) ➾ NoMatch

Linear patterns

• What happens if a pattern has more than one occurrence of the same
matchable symbol? e.g.

(Pair x x → x) (Pair U U)

• Hard to determine equality if U is a case (a term denoting a function).

• “nonlinearity can break confluence of reduction” (page 35) (how so?)

• For data structures, equality can be defined in other ways.

Linear patterns

• For the reasons on previous slide, non-linear patterns are deemed to always
fail.

• Why not just make them a syntax error (as they are in Haskell)?

‣ In the Dynamic Pattern Calculus, patterns can be computed.

‣ In that context, syntactic checks for linearity will (unjustly) prohibit
programs where non-linear patterns reduce to linear ones.

‣ So the approach of the Static Calculus is motivated by future issues in
the Dynamic Calculus.

Substitutions

• σ = { u1 / x1 ... un / xn }

• Partial function from symbols to terms.

• { u / x } reads as “replace u for x”

• Usual rules apply regarding avoiding variable capture, e.g.

(x → (y → x y)) y ➾ y’ → y y’

Static matching

《t, p》reads “match term t with pattern p” (book uses different brackets)

《u, x》= some {u / x}

《c, c》= some { }

《u v, p q》= {u / p} ⊎ {v / q}, if u v is a compound

《u, p》 = none, otherwise, if u is matchable

《u, p》 = undefined, otherwise

Static matching

《u, x》= some {u / x}

《c, c》= some { }

《u v, p q》= {u / p} ⊎ {v / q}, if u v is a compound

《u, p》 = none, otherwise, if u is matchable

《u, p》 = undefined, otherwise

disjoint union
ensures linearity

《u, x》= some {u / x}

《c, c》= some { }

《u v, p q》= {u / p} ⊎ {v / q}, if u v is a compound

《u, p》 = none, otherwise, if u is matchable

《u, p》 = undefined, otherwise

Static matching

ensure term is not
a redex

Matchable, data structure, compound

compound

k ::= d t (data structure applied to term)

data structure

d ::=
 c (constructor)
 k (compound)

matchable

m ::=
 p → t (case)
 d (data structure)

Reduction

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
 reduct1 <- reduce t1
 case reduct1 of
 Case pattern body ->
 case match pattern t2 of
 None -> return noMatch
 Some subst -> do
 newBody <- applySubst subst body
 reduce newBody
 Undefined -> do
 reduct2 <- reduce t2
 reduce $ Application reduct1 reduct2
 other -> return $ Application reduct1 t2

reduce other = return other

Reduction

apply the static matching
rule from before

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
 reduct1 <- reduce t1
 case reduct1 of
 Case pattern body ->
 case match pattern t2 of
 None -> return noMatch
 Some subst -> do
 newBody <- applySubst subst body
 reduce newBody
 Undefined -> do
 reduct2 <- reduce t2
 reduce $ Application reduct1 reduct2
 other -> return $ Application reduct1 t2

reduce other = return other

Reduction

matching failed

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
 reduct1 <- reduce t1
 case reduct1 of
 Case pattern body ->
 case match pattern t2 of
 None -> return noMatch
 Some subst -> do
 newBody <- applySubst subst body
 reduce newBody
 Undefined -> do
 reduct2 <- reduce t2
 reduce $ Application reduct1 reduct2
 other -> return $ Application reduct1 t2

reduce other = return other

Reduction

matching succeeded

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
 reduct1 <- reduce t1
 case reduct1 of
 Case pattern body ->
 case match pattern t2 of
 None -> return noMatch
 Some subst -> do
 newBody <- applySubst subst body
 reduce newBody
 Undefined -> do
 reduct2 <- reduce t2
 reduce $ Application reduct1 reduct2
 other -> return $ Application reduct1 t2

reduce other = return other

reduce :: Term -> Reduce Term

reduce (Application t1 t2) = do
 reduct1 <- reduce t1
 case reduct1 of
 Case pattern body ->
 case match pattern t2 of
 None -> return noMatch
 Some subst -> do
 newBody <- applySubst subst body
 reduce newBody
 Undefined -> do
 reduct2 <- reduce t2
 reduce $ Application reduct1 reduct2
 other -> return $ Application reduct1 t2

reduce other = return other

Reduction

argument needed to be
reduced, try matching again

Theorems

• Reduction is confluent (if a term has a normal form, then it is unique).

• Reduction cannot get stuck (every term of the form ‘(p → t) u’ is reducible).

Fixed points

Ω = Rec x → x (Rec x)

FIX = f → Ω (Rec (x → f (Ω x)))

(you could also define FIX as it is done in the Lambda Calculus, but on page 37
there is promise of a type for Rec in part 2 of the book).

Extensions

• Sequence of cases:

p1 → t1 | p2 → t2 | ... | pn → tn

• For example:

Pair x y → x | Triple x y z → x | Quad w x y z → w

• Reduction:

(p → s | r) u ⟶ σ s if 《u, p》 = some σ

(p → s | r) u ⟶ r u if 《u, p》 = none

Generic programming

fold f g = x y → f (fold f g x) (fold f g y) | x → g x

size = fold plus (x → 1)

(assuming some sugar for named (possibly recursive) definitions).

