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Sad state of debugging support in Haskell

Typical advice from the Haskell cafe mailing list:

“Techniques that worked for Java don't work very well when debugging 
Haskell. Others will tell you about flags and possibly using the 
debugger but I would count on eyeballing and printing as the least 
painful method.”
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Why do we want stack tracing?

• To explain dynamic context.

‣ It is easy to get lost in GHCi’s breakpoint debugger.

- Programmers want to know “how did the computation get here?”

‣ Uncaught exceptions are a common source of errors.

- They ought to be relatively easy to find.

- Currently they can be hard to find.

- Programmers want to know “how did the computation get here?”
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Stack tracing considered beneficial to Facebook

• In the “Functional Programming at Facebook” CUFP talk on Friday:

“Stack traces point the way to bugs” (using Erlang).
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Desirable features

• Works with all programs.

• Is accessible (doesn’t require contortions or extensive source modifications).

• Can be used within the GHCi debugger.

• Can be applied selectively to subparts of programs.

• Space and time efficient (with knobs to tune).

• Arguments of a function call can be optionally included in the trace.

• Output makes sense to mortals on sane code (bugs are ultimately found).
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Some hurdles (the usual suspects)

• Lazy evaluation.

• CAFs.

• Higher-order functions.

• Performance costs.



map f list
   = case list of
        []   -> []
        x:xs -> f x : map f xs
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Lazy evaluation is the main culprit

list might not be in WHNF.
The case statement might cause other redexes 
to be evaluated.
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Lazy evaluation is the main culprit

Subterms of the body are suspended as thunks. 
If and when they are reduced depends on the 
external context of the call to map.
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Higher-order functions are also tricky

Does the call to the function bound to f 
constitute a child of the call to map?

map f list
   = case list of
        []   -> []
        x:xs -> f x : map f xs
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When is a function called in Haskell?

Maybe controversial. 

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.
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When is a function called in Haskell?

Maybe controversial. 

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.

This is the view you get from cost centre 
stacks, and StackTrace.
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When is a function called in Haskell?

Maybe controversial. 

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.

This is the view you get from Hat-Stack, 
and stack traces in most conventional 
languages.
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Existing solutions - main contenders

• Cost centre stacks.

• StackTrace (as seen at the Haskell Symposium on Thursday).

• Hat.

• Breakpoint debugger trace history.
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Cost centre stacks (simplified for stack tracing)

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs
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Cost centre stacks - context annotations

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs

Annotate the expression e with some 
context information c. It is called scc in 
the profiler.
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Cost centre stacks - the context stack

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs

The current context (stack). Not part of 
the normal semantics. Added for profiling 
where it is called the cost-centre stack.
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Cost centre stacks - thunk allocation

code stack heap context

let x = THUNK(e2) in e1 s h cs

code stack heap context

e1[y/x] s h[ y := THUNK(e2)cs ] cs
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Cost centre stacks - thunk allocation

code stack heap context

let x = THUNK(e2) in e1 s h cs

code stack heap context

e1[y/x] s h[ y := THUNK(e2)cs ] cs

The thunk heap 
object is annotated 
with the current 
context.
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Cost centre stacks - thunk reduction

code stack heap context

x s h[ x := THUNK(e)thunk_cs ] cs

code stack heap context

e (Update x)cs : s h[ x := BLACKHOLE ] thunk_cs
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Cost centre stacks - thunk reduction

code stack heap context

x s h[ x := THUNK(e)thunk_cs ] cs

code stack heap context

e (Update x)cs : s h[ x := BLACKHOLE ] thunk_cs

The context of the 
thunk is reinstated.
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Cost centre stacks: CAFs are a pain

• CAFs are top-level thunks. 

• Where do they get their context from?
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Cost centre stacks: CAFs are a pain

div x@(I32# x#) y@(I32# y#)
   | y == 0                     = divZeroError
   | x == minBound && y == (-1) = overflowError
   | otherwise                  = I32# (x# `divInt32#` y#)

divZeroError :: a
divZeroError = throw (ArithException DivideByZero)

ghc --make -prof -auto-all Main.hs
./Main +RTS -xc -RTS
<GHC.Err.CAF>Main: divide by zero
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CAFs - can we just turn them into functions?

• Sharing of CAF reduction can be important for performance.

• An optimising compiler can introduce more CAFs by lifting constant 
expressions - so they can be more common than you think.

• Big question: can we preserve sharing (when needed) but still get useful 
traces?

• Maybe it is sufficient if a CAF receives its context from the first place it is 
evaluated?
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Cost centre stacks - stack compression

• Necessary to keep the space usage in check.

• When a function is pushed on the context stack all previous instances of that 

function are removed from the stack. (Morgan, Jarvis, JFP 1998).

• Interesting to compare with the stack elision in StackTrace.

• More difficult if you want to allow arguments to function calls in the stack.
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Hat (stack)

• Source-to-source transformation.

• Massive performance overheads, but big payoff.

• Detailed execution trace is saved to disk and can be debugged with many 
different tools.

• Somewhat difficult to maintain:

• Need to transform all libraries.

• Primitive functions need special treatment.

• It would be nice if Haskell had better support for source transformation tools.
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Some things to do ...

• Work out the (desirable) semantics of stack tracing in Haskell.

• What to do with higher-order function applications?

• What to do with CAFs?

• Determine if the cost-centre stacks of profiling can be re-used. 

• Look more closely at the continuation marks in Scheme (e.g. “Modeling an 
algebraic stepper” Clements, Flatt, Felleisen.)

• http://www.haskell.org/haskellwiki/Ministg


