
Haskell Implementors Workshop 2009 Stack Tracing in Haskell

Bernie Pope, 2009 The University of Melbourne, Australia

Stack Tracing in Haskell

An exploration of the design space

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Sad state of debugging support in Haskell

Typical advice from the Haskell cafe mailing list:

“Techniques that worked for Java don't work very well when debugging
Haskell. Others will tell you about flags and possibly using the
debugger but I would count on eyeballing and printing as the least
painful method.”

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Outline

• Motivation.

• Desirable features.

• Technical impediments.

• Existing solutions.

• Conclusions.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Why do we want stack tracing?

• To explain dynamic context.

‣ It is easy to get lost in GHCi’s breakpoint debugger.

- Programmers want to know “how did the computation get here?”

‣ Uncaught exceptions are a common source of errors.

- They ought to be relatively easy to find.

- Currently they can be hard to find.

- Programmers want to know “how did the computation get here?”

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Stack tracing considered beneficial to Facebook

• In the “Functional Programming at Facebook” CUFP talk on Friday:

“Stack traces point the way to bugs” (using Erlang).

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Desirable features

• Works with all programs.

• Is accessible (doesn’t require contortions or extensive source modifications).

• Can be used within the GHCi debugger.

• Can be applied selectively to subparts of programs.

• Space and time efficient (with knobs to tune).

• Arguments of a function call can be optionally included in the trace.

• Output makes sense to mortals on sane code (bugs are ultimately found).

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Some hurdles (the usual suspects)

• Lazy evaluation.

• CAFs.

• Higher-order functions.

• Performance costs.

map f list
 = case list of
 [] -> []
 x:xs -> f x : map f xs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Lazy evaluation is the main culprit

list might not be in WHNF.
The case statement might cause other redexes
to be evaluated.

map f list
 = case list of
 [] -> []
 x:xs -> f x : map f xs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Lazy evaluation is the main culprit

Subterms of the body are suspended as thunks.
If and when they are reduced depends on the
external context of the call to map.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Higher-order functions are also tricky

Does the call to the function bound to f
constitute a child of the call to map?

map f list
 = case list of
 [] -> []
 x:xs -> f x : map f xs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

When is a function called in Haskell?

Maybe controversial.

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

When is a function called in Haskell?

Maybe controversial.

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.

This is the view you get from cost centre
stacks, and StackTrace.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

When is a function called in Haskell?

Maybe controversial.

Some options:

• In the context where it is first mentioned by name.

• In the context where it is saturated.

• All of the above and any other context where it receives an argument.

• In the context where it is reduced.

This is the view you get from Hat-Stack,
and stack traces in most conventional
languages.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Existing solutions - main contenders

• Cost centre stacks.

• StackTrace (as seen at the Haskell Symposium on Thursday).

• Hat.

• Breakpoint debugger trace history.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks (simplified for stack tracing)

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - context annotations

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs

Annotate the expression e with some
context information c. It is called scc in
the profiler.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - the context stack

code stack heap context

mark c e s h cs

code stack heap context

e s h c:cs

The current context (stack). Not part of
the normal semantics. Added for profiling
where it is called the cost-centre stack.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - thunk allocation

code stack heap context

let x = THUNK(e2) in e1 s h cs

code stack heap context

e1[y/x] s h[y := THUNK(e2)cs] cs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - thunk allocation

code stack heap context

let x = THUNK(e2) in e1 s h cs

code stack heap context

e1[y/x] s h[y := THUNK(e2)cs] cs

The thunk heap
object is annotated
with the current
context.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - thunk reduction

code stack heap context

x s h[x := THUNK(e)thunk_cs] cs

code stack heap context

e (Update x)cs : s h[x := BLACKHOLE] thunk_cs

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - thunk reduction

code stack heap context

x s h[x := THUNK(e)thunk_cs] cs

code stack heap context

e (Update x)cs : s h[x := BLACKHOLE] thunk_cs

The context of the
thunk is reinstated.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks: CAFs are a pain

• CAFs are top-level thunks.

• Where do they get their context from?

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks: CAFs are a pain

div x@(I32# x#) y@(I32# y#)
 | y == 0 = divZeroError
 | x == minBound && y == (-1) = overflowError
 | otherwise = I32# (x# `divInt32#` y#)

divZeroError :: a
divZeroError = throw (ArithException DivideByZero)

ghc --make -prof -auto-all Main.hs
./Main +RTS -xc -RTS
<GHC.Err.CAF>Main: divide by zero

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

CAFs - can we just turn them into functions?

• Sharing of CAF reduction can be important for performance.

• An optimising compiler can introduce more CAFs by lifting constant
expressions - so they can be more common than you think.

• Big question: can we preserve sharing (when needed) but still get useful
traces?

• Maybe it is sufficient if a CAF receives its context from the first place it is
evaluated?

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Cost centre stacks - stack compression

• Necessary to keep the space usage in check.

• When a function is pushed on the context stack all previous instances of that

function are removed from the stack. (Morgan, Jarvis, JFP 1998).

• Interesting to compare with the stack elision in StackTrace.

• More difficult if you want to allow arguments to function calls in the stack.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Hat (stack)

• Source-to-source transformation.

• Massive performance overheads, but big payoff.

• Detailed execution trace is saved to disk and can be debugged with many
different tools.

• Somewhat difficult to maintain:

• Need to transform all libraries.

• Primitive functions need special treatment.

• It would be nice if Haskell had better support for source transformation tools.

Bernie Pope, 2009

Stack Tracing in HaskellHaskell Implementors Workshop 2009

The University of Melbourne, Australia

Some things to do ...

• Work out the (desirable) semantics of stack tracing in Haskell.

• What to do with higher-order function applications?

• What to do with CAFs?

• Determine if the cost-centre stacks of profiling can be re-used.

• Look more closely at the continuation marks in Scheme (e.g. “Modeling an
algebraic stepper” Clements, Flatt, Felleisen.)

• http://www.haskell.org/haskellwiki/Ministg

