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Outline

• Computing the Fibonacci sequence as a motivating example.

• Implicit open recursion in object oriented style.

• Explicit open recursion using higher order functions and fixed points.



The Fibonacci sequence

• 1, 1, 2, 3, 5, 8, 13, 21 ... 

• X0 = 1

• X1 = 1

• Xn = Xn-1 + Xn-2



Computing the nth Fibonacci number in Scala

object Main {

   def fib(n:BigInt):BigInt =
      if (n <= 1) 1 else fib(n-1) + fib(n-2)

   def main(args: Array[String]) =
      (0 to 100) map (x => println(fib(x)))

}



Our previous solution is correct but slow

• Curiously, the complexity of the previous fib function is O(Fib(n)).

• That is to say, as the input n grows larger, the run time grows proportionally to 
the magnitude of the output.

• The growth of the Fibonacci sequence is exponential, so the run time of the 
previous fib function grows exponentially.



Why is it slow?
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How to make it fast?

• This is an obvious candidate for Dynamic Programming.

• Tabulate the results of recursive calls: at each new call check if it was already 
computed, and if so, retrieve result from the table.

• Assuming that arithmetic is O(1), then we can improve the complexity of fib to 
O(n).

• We could modify the definition of fib directly to add the tabulation, but instead 
we are going to use it as a model for writing extensible programs.



The object oriented approach, first the slow way

class Fib() {
   def fib(n:BigInt):BigInt =
      if (n <= 1) 1 else this.fib(n-1) + this.fib(n-2)
}

object Main {
   def main(args: Array[String]) {
      val fibber = new Fib()
      (1 to 100) map (x => println(fibber.fib(x)))
   }
}



Now extend it to use a table - make it fast

import scala.collection.mutable.Map

class FibMemo () extends Fib() {
   val memo:Map[BigInt,BigInt] = Map()
   override def fib(n:BigInt):BigInt = {
      if (memo.contains(n))
          memo(n)
      else {
         val result = super.fib(n)
         memo(n) = result
         result
      }
   }
}



Implicit open recursion

val result = super.fib(n)

if (n <= 1) 1 else this.fib(n-1) + this.fib(n-2)

From Fib.fib:

From FibMemo.fib:



Closed recursion

The instance of fib in the body 
is fixed at compile time.

Can we make it open?

def fib(n:BigInt):BigInt =
   if (n <= 1) 1 else fib(n-1) + fib(n-2)

Back to the original version:



Explicit open recursion

Now the function called in the 
body is a parameter.

def fibOpen(r:BigInt=>BigInt)(n:BigInt):BigInt =
   if (n <= 1) 1 else r(n-1) + r(n-2)



fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

Explicit open recursion

Notice the change in type:

fib: (BigInt=>BigInt)



fibOpen (fibOpen (fibOpen (fibOpen ...)))

How to close the recursion?

To get back the original fib, 
we want something like:



Fixed points (in Mathematics)

• Given some function f, x is a fixed point of f if:

x = f(x)

• Some functions have no fixed points:

f(x) = x+1

• Some functions have exactly one fixed point:

f(x) = 3

• Some functions have infinitely many fixed points:

f(x) = x



Finding fixed points

• Given some function f, x is a fixed point of f if:

x = f(x)

• We can say: 

x = fix(f)

assuming some function fix, which can compute fixed points.

• So, substituting x = fix(f) into x = f(x):

fix(f) = f(fix(f))

• Do some expanding:

fix(f) = f(f(f(f ...)))



Writing fix in Scala

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
   f((x:T) => fix(f)(x))

Remove some junk:

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
   f((x:T) => fix(f)(x))



Writing fix in Haskell

fix f = f (fix f)



Coping with eager evaluation

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
   f((x:T) => fix(f)(x))

We have this:

But we really wanted this:

def fix[T](f:T=>T):T =
   f(fix(f))

Why the compromise?



Closing fibOpen

fix:      ((T=>T)=>(T=>T))=>T=>T
fibOpen:  (BigInt=>BigInt)=>(BigInt=>BigInt)

Note the types:

Take the fixed point of fibOpen

val fibSlow:BigInt=>BigInt = fix(fibOpen)

Do some expanding:

fibSlow = fibOpen(fibOpen(fibOpen ...))



How to make it go fast?

• So far we have:

fibSlow = fix(fibOpen)

• We want to make a fast version by using the same tabling trick as before.

• Basic idea is to write an open recursive version of fibMemo, and then combine 

with fibOpen.



Open recursive version of tabled fib

val memo:Map[BigInt,BigInt] = Map()

def fibMemo(r:BigInt=>BigInt)(n:BigInt):BigInt = {
   if (memo.contains(n))
       memo(n)
   else {
      val result = r(n)
      memo(n) = result
      result
   }
}



fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

fibMemo: (BigInt=>BigInt)=>(BigInt=>BigInt)

Open recursive version of tabled fib

Notice the types:



Function composition (in Mathematics)

• Given some functions f and g, we define a composition operator:

(f ∘ g) x = f (g (x)) 

• Recall the fix function

fix(f) = f(fix(f))

• We can take the fixed point of a function composition:

fix(f ∘ g)

= (f ∘ g)(fix(f ∘ g))

= f(g(fix(f ∘ g))

= f(g(f(g(f(g(f(g ...))))))



Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo _ compose fibOpen)

def main(args: Array[String]) =
   (1 to 100) map (x => println(fibFast(x)))

We can call fibFast like usual:



Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo _ compose fibOpen)

fibFast = fibMemo(fibOpen(fibMemo(fibOpen ...)))

Expanding a bit:



Extending further

• There’s nothing stopping us from composing fibOpen with other functions to 

extend it in other ways.

• Homework: write a version which prints the value of is argument at each 

recursive call.



Conclusion

• Open recursion is built into object oriented classes.

• Higher order functions provide all the tools we need to achieve the same affect.

• However, you generally don’t see this kind of extensibility in functional 

programming libraries.

• Maybe not needed that often.

• Quite tedious.


