
Open recursion and fixed points

Bernie Pope
Melbourne Scala Users Group
2011

Outline

• Computing the Fibonacci sequence as a motivating example.

• Implicit open recursion in object oriented style.

• Explicit open recursion using higher order functions and fixed points.

The Fibonacci sequence

• 1, 1, 2, 3, 5, 8, 13, 21 ...

• X0 = 1

• X1 = 1

• Xn = Xn-1 + Xn-2

Computing the nth Fibonacci number in Scala

object Main {

 def fib(n:BigInt):BigInt =
 if (n <= 1) 1 else fib(n-1) + fib(n-2)

 def main(args: Array[String]) =
 (0 to 100) map (x => println(fib(x)))

}

Our previous solution is correct but slow

• Curiously, the complexity of the previous fib function is O(Fib(n)).

• That is to say, as the input n grows larger, the run time grows proportionally to
the magnitude of the output.

• The growth of the Fibonacci sequence is exponential, so the run time of the
previous fib function grows exponentially.

Why is it slow?

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1)

fib(1)
Repeated computation.

fib(0)

fib(0)

How to make it fast?

• This is an obvious candidate for Dynamic Programming.

• Tabulate the results of recursive calls: at each new call check if it was already
computed, and if so, retrieve result from the table.

• Assuming that arithmetic is O(1), then we can improve the complexity of fib to
O(n).

• We could modify the definition of fib directly to add the tabulation, but instead
we are going to use it as a model for writing extensible programs.

The object oriented approach, first the slow way

class Fib() {
 def fib(n:BigInt):BigInt =
 if (n <= 1) 1 else this.fib(n-1) + this.fib(n-2)
}

object Main {
 def main(args: Array[String]) {
 val fibber = new Fib()
 (1 to 100) map (x => println(fibber.fib(x)))
 }
}

Now extend it to use a table - make it fast

import scala.collection.mutable.Map

class FibMemo () extends Fib() {
 val memo:Map[BigInt,BigInt] = Map()
 override def fib(n:BigInt):BigInt = {
 if (memo.contains(n))
 memo(n)
 else {
 val result = super.fib(n)
 memo(n) = result
 result
 }
 }
}

Implicit open recursion

val result = super.fib(n)

if (n <= 1) 1 else this.fib(n-1) + this.fib(n-2)

From Fib.fib:

From FibMemo.fib:

Closed recursion

The instance of fib in the body
is fixed at compile time.

Can we make it open?

def fib(n:BigInt):BigInt =
 if (n <= 1) 1 else fib(n-1) + fib(n-2)

Back to the original version:

Explicit open recursion

Now the function called in the
body is a parameter.

def fibOpen(r:BigInt=>BigInt)(n:BigInt):BigInt =
 if (n <= 1) 1 else r(n-1) + r(n-2)

fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

Explicit open recursion

Notice the change in type:

fib: (BigInt=>BigInt)

fibOpen (fibOpen (fibOpen (fibOpen ...)))

How to close the recursion?

To get back the original fib,
we want something like:

Fixed points (in Mathematics)

• Given some function f, x is a fixed point of f if:

x = f(x)

• Some functions have no fixed points:

f(x) = x+1

• Some functions have exactly one fixed point:

f(x) = 3

• Some functions have infinitely many fixed points:

f(x) = x

Finding fixed points

• Given some function f, x is a fixed point of f if:

x = f(x)

• We can say:

x = fix(f)

assuming some function fix, which can compute fixed points.

• So, substituting x = fix(f) into x = f(x):

fix(f) = f(fix(f))

• Do some expanding:

fix(f) = f(f(f(f ...)))

Writing fix in Scala

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
 f((x:T) => fix(f)(x))

Remove some junk:

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
 f((x:T) => fix(f)(x))

Writing fix in Haskell

fix f = f (fix f)

Coping with eager evaluation

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
 f((x:T) => fix(f)(x))

We have this:

But we really wanted this:

def fix[T](f:T=>T):T =
 f(fix(f))

Why the compromise?

Closing fibOpen

fix: ((T=>T)=>(T=>T))=>T=>T
fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

Note the types:

Take the fixed point of fibOpen

val fibSlow:BigInt=>BigInt = fix(fibOpen)

Do some expanding:

fibSlow = fibOpen(fibOpen(fibOpen ...))

How to make it go fast?

• So far we have:

fibSlow = fix(fibOpen)

• We want to make a fast version by using the same tabling trick as before.

• Basic idea is to write an open recursive version of fibMemo, and then combine

with fibOpen.

Open recursive version of tabled fib

val memo:Map[BigInt,BigInt] = Map()

def fibMemo(r:BigInt=>BigInt)(n:BigInt):BigInt = {
 if (memo.contains(n))
 memo(n)
 else {
 val result = r(n)
 memo(n) = result
 result
 }
}

fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

fibMemo: (BigInt=>BigInt)=>(BigInt=>BigInt)

Open recursive version of tabled fib

Notice the types:

Function composition (in Mathematics)

• Given some functions f and g, we define a composition operator:

(f ∘ g) x = f (g (x))

• Recall the fix function

fix(f) = f(fix(f))

• We can take the fixed point of a function composition:

fix(f ∘ g)

= (f ∘ g)(fix(f ∘ g))

= f(g(fix(f ∘ g))

= f(g(f(g(f(g(f(g ...))))))

Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo _ compose fibOpen)

def main(args: Array[String]) =
 (1 to 100) map (x => println(fibFast(x)))

We can call fibFast like usual:

Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo _ compose fibOpen)

fibFast = fibMemo(fibOpen(fibMemo(fibOpen ...)))

Expanding a bit:

Extending further

• There’s nothing stopping us from composing fibOpen with other functions to

extend it in other ways.

• Homework: write a version which prints the value of is argument at each

recursive call.

Conclusion

• Open recursion is built into object oriented classes.

• Higher order functions provide all the tools we need to achieve the same affect.

• However, you generally don’t see this kind of extensibility in functional

programming libraries.

• Maybe not needed that often.

• Quite tedious.

