Open recursion and fixed points

Bernie Pope
Melbourne Scala Users Group
2011

Outline

e Computing the Fibonacci sequence as a motivating example.

¢ Implicit open recursion in object oriented style.

e Explicit open recursion using higher order functions and fixed points.

The Fibonacci sequence

1,1,2,3,5,8,13,21 ...

* Xo=1

e X1 =1

o Xn = Xn—1 + Xn-2

Computing the n" Fibonacci number in Scala

object Main {

def fib(n:BigInt):BigInt =
if (n <= 1) 1 else fib(n-1) + fib(n-2)

def main(args: Array[String]) =
(0 to 100) map (x => println(fib(x)))

Our previous solution is correct but slow

e Curiously, the complexity of the previous fib function is O(Fib(n)).

e That is to say, as the input n grows larger, the run time grows proportionally to
the magnitude of the output.

e The growth of the Fibonacci sequence is exponential, so the run time of the
previous fib function grows exponentially.

Why is it slow??

fib(4)

fib(3)

i w

Repeated computation.

How to make it fast?

¢ This is an obvious candidate for Dynamic Programming.

e Tabulate the results of recursive calls: at each new call check if it was already
computed, and if so, retrieve result from the table.

e Assuming that arithmetic is O(1), then we can improve the complexity of fib to
O(n).

¢ \We could modify the definition of fib directly to add the tabulation, but instead
we are going to use it as a model for writing extensible programs.

The object oriented approach, first the slow way

class Fib() {
def fib(n:BigInt):BigInt =
if (n <= 1) 1 else this.fib(n-1) + this.fib(n-2)
}

object Main {
def main(args: Array[String]) {
val fibber = new Fib()
(1 to 100) map (x => println(fibber.fib(x)))

Now extend It to use a table - make It fast

import scala.collection.mutable.Map

class FibMemo () extends Fib() {
val memo:Map[BigInt,BigInt] = Map()
override def fib(n:BigInt):BigInt = {
if (memo.contains(n))

memo (n)
else {
val result = super.fib(n)
memo(n) = result
result

Implicit open recursion

From Fib.fib:

if (n<=1) 1 else-(n—l) +-(n—2)

From FibMemo.fib:

val result =-(n)

Closed recursion

Back to the original version:

def (£2B(n:BigInt) :BigInt =
1f (n <= 1) 1 else @1B(n-1) + §EEO)(n-2)

The instance of fib In the body
s fixed at compile time.

Can we make it open?

Explicit open recursion

def fibOpen(E:BigInt=>BigInt)(n:BigInt):BigInt =
1f (n <= 1) 1 else@(n-1) + &E(n-2)

Now the function called in the
body Is a parameter.

Explicit open recursion

Notice the change In type:

fib: (BigInt=>BigInt)

fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

How to close the recursion?

To get back the original fib,
we want something like:

fibOpen (fibOpen (fibOpen (fibOpen ...)))

Fixed points (in Mathematics)

e Given some function f, x is a fixed point of f if:

X = f(x)

e Some functions have no fixed points:

f(x) = x+1

e Some functions have exactly one fixed point:

f(x) =3

e Some functions have infinitely many fixed points:

f(x) = x

Finding fixed points

e Given some function f, x is a fixed point of f if:
X = f(x)
¢ \We can say:
x = fix(f)
assuming some function fix, which can compute fixed points.
e S0, substituting x = fix(f) into x = f(x):
fix(f) = f(fix(f))
¢ Do some expanding:

fix(f) = f(f(f(f ...)))

Writing fix in Scala

def fix[T](f:(T=>T)=>(T=>T)):T=>T
£((x:T) => £ix(£) (X))

Remove some junk:

fix (f)
f (fix(f))

Writing fix in Raskell

fix £ = £ (fix £f)

Coping with eager evaluation

We have this:

def fix[T](f:(T=>T)=>(T=>T)):T=>T =
f((x:T) => fix(f)(x))

But we really wanted this:

def fix[T](£f:T=>T):T =
f(fix(£f))

Why the compromise?

Closing fibOpen

Note the types:
fixs ((T=>T)=>(T=>T))=>T=>T
fibOpen: (BigInt=>BigInt)=>(BigInt=>BigInt)

Take the fixed point of filbOpen

val fibSlow:BigInt=>BigInt = fix(fibOpen)

Do some expanding:

fibSlow = fibOpen(fibOpen(fibOpen ...))

How to make it go fast?

e So far we have:

fibSlow = fix(floOpen)

¢ \\We want to make a fast version by using the same tabling trick as before.

¢ Basic idea is to write an open recursive version of fibMemo, and then combine

with fibOpen.

Open recursive version of tabled fib

val memo:Map[BigInt,BigInt] = Map()

def fibMemo(r:BigInt=>BigInt)(n:BigInt):BigInt = {
1f (memo.contains(n))

memo (n)
else {
val result = r(n)
memo(n) = result
result

Open recursive version of tabled fib

Notice the types:

fibOpen: (BigInt=>BigInt)=>(BigInt=>BiglInt)

fibMemo: (BigInt=>BigInt)=>(BigInt=>BigInt)

Function composition (in Mathematics)

e Given some functions f and g, we define a composition operator:

e Recall the fix function
fix(f) = f(fix(f))
¢ \We can take the fixed point of a function composition:
fix(f - g)
(f - g)(fix(f - g))
fg(fix(f - g))
f

Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo compose fibOpen)

We can call fibFast like usual:

def main(args: Array[String]) =
(1 to 100) map (x => println(fibFast(x)))

Closing the fast version:

val fibFast:BigInt=>BigInt = fix(fibMemo compose fibOpen)

Expanding a bit:

fibFast = fibMemo(fibOpen(fibMemo(fibOpen ...)))

Extending further

¢ There’s nothing stopping us from composing fibOpen with other functions to

extend it in other ways.

e Homework: write a version which prints the value of is argument at each

recursive call.

Conclusion

e Open recursion is built into object oriented classes.

e Higher order functions provide all the tools we need to achieve the same affect.

e However, you generally don’t see this kind of extensibility in functional

programming libraries.

e Maybe not needed that often.

¢ Quite tedious.

