MPI bindings in Haskell

Exploring the design space

Outline

e Qverview of MPIl and demo.

e The Haskell FFI.

e C2HS, a tool for helping to write bindings to C.

e A first stab.

e A second stab.

¢ A tricky case: non-blocking receive.

e The future and beyond.

MPI - Message Passing Interface

e A protocol for distributed parallel communication.

¢ De facto standard in distributed high performance computing.

e Exposed to the world via a programming language API.

e Official support for C, C++ and Fortran.

e Other languages usually bind to one of the official APlIs.

e Many mature implementations (OpenMPI, MPICH, LAM/MPI, various hardware
vendors have their own/modified versions).

MPI - Message Passing Interface

e Execution model influenced by unix processes.

e Each parallel task is called a “process”. Normally each process is run on a
different CPU (core), but this is not required.

e Each process has its own address space.

e A job is usually launched with mpirun/mpiexec, which forks off a number of
processes and distributes them across CPUs.

e |t is typical to employ a Single Program Multiple Data (SPMD) style of
programming, but it is not required.

e A process can be multi-threaded.

MPI - Message Passing Interface

e Point to point communication: (e.g.) MPI_Send, MPI_recv.

e Collective communication: (e.g.) MPI_Bcast, MPI_Alltoall, MPI_Gather,
MPI_Scatter.

e Synchronisation: (e.g.) MPI_barrier.

e Data serialisation: (e.g.) MPI_pack

e Parallel 1/0.

A taste of MPI in Haskell

main :: IO ()
main = mpi $ do
rank <- commRank commWorld
size <- commSize commWorld
if (rank /= root)
then send (msg rank) root tag commWorld
else do
forM [l..size-1] $ \sender -> do

(_status, result) <- recv (toRank sender) tag commWorld
putStrLn result

msg :: Rank -> String
msg r = "Greetings from process " ++ show r ++ "1!"
root :: Rank

root = toRank 0

Compiling, then running a 10 process job

$ ghc --make Greetings.hs
[l of 1] Compiling Main (Greetings.hs, Greetings.o)
Linking Greetings

$ mpirun -np 10 ./Greetings
Greetings from process 1!
Greetings from process 2!
Greetings from process 3!
Greetings from process 4!
Greetings from process 5!
Greetings from process 6!
Greetings from process 7!
Greetings from process 8!
Greetings from process 9!

Getting our hands dirty with the FFI

MPI_Send prototype in C:

int MPI Send(void *buf, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

Direct foreign wrapper in Haskell:

foreign import ccall unsafe "MPI Send"
send :: Ptr () -> CInt -> Ptr () -> CInt -> CInt -> Ptr () -> IO CInt

Automation to the rescue

¢ \Writing the direct foreign wrapper code is tedious and error prone.
¢ Better to get a tool to do all the hard work.
¢ \We have a few choices in Haskell: Green Card, hsc2hs, c2hs.

e c2hs processes C header files, so it remains in sync with the C API.

Automation to the rescue

#include <mpi.h>
{# context prefix = "MPI" #}

send = {# call unsafe Send as send #}

{# fun unsafe Comm rank as * { id "Comm', alloca- "Int' peekIntConv* } -> "Int' #}

Automation to the rescue

data Status =
Status
{ status_source :: Int
, status_tag :: Int
, status error :: Int
, status _count :: Int
, status_cancelled :: Int

deriving (Eq, Ord, Show)
{# pointer *Status as StatusPtr -> Status #}

instance Storable Status where

sizeOf = {#sizeof MPI Status #}

alignment = 4

peek p = Status
<$> 1liftM cIntConv ({#get MPI Status->MPI SOURCE #} p)
<*> 1iftM cIntConv ({#get MPI Status->MPI TAG #} p)
<*#> 1iftM cIntConv ({#get MPI Status->MPI ERROR #} D)
<*> 1iftM cIntConv ({#get MPI Status-> count #} p)
<*> 1iftM cIntConv ({#get MPI Status-> cancelled #} p)

poke p x = do
{#set MPI_ Status.MPI SOURCE #} p (cIntConv $ status_source x)
{#set MPI Status.MPI SOURCE #} p (cIntConv $ status tag x)
{#set MPI Status.MPI ERROR #} p (cIntConv § status error x)
{#set MPI Status. count #} p (cIntConv $ status count x)
{#set MPI Status. cancelled #} p (cIntConv $ status cancelled x)

A first stab at a more usable binding to MPl_Send

C:

int MPI Send(void *buf, int count, MPI Datatype datatype,
int dest, int tag, MPI_ Comm comm)

Haskell:

send :: (Storable e, MArray a e IO) => a Int e -> Rank -> Tag -> Comm -> IO Int

A first stab at a more usable binding to MPI_Send

e Apes the C interface.

e Not clear which kind of array we want to use, so we go for the MArray
interface. Any mutable array will do.

e Big problem is all array elements must be Storable, which in turn means they
must all have a fixed memory size.

e Hard to send an arbitrary data structure.

A second stab at MPI_Send

send :: Serialize msg => msg -> Rank -> Tag -> Comm -> IO ()
send = sendBS . encode

sendBS :: ByteString -> Rank -> Tag -> Comm -> IO ()
sendBS bs rank tag comm = do
let cRank = fromRank rank
cTag = fromTag tag
cCount = cIntConv $ length bs
unsafeUseAsCString bs $ \cString ->
checkError $ Internal.send (castPtr cString) cCount byte
cRank cTag comm

Now we can send and recv interesting things!

type Msg = (Bool, Int, String, [()])

msg :: Msg
msg = (True, 12, "fred", [(), (), ()])

main :: IO ()
main = mpi $ do
size <- commSize commWorld
when (size >= 2) $ do
rank <- commRank commWorld

when (rank == sender) §$
send msg receiver tag commWorld
when (rank == receiver) $ do

(_status, result) <- recv sender tag commWorld
print (result :: Msgqg)

Tricky case: non-blocking recv

e Receiver doesn’t wait for message completion. Can continue working while
message is delivered.

int MPI TIrecv(void *, int, MPI Datatype, int, int,
MPI Comm, MPI Request *)

* Result is a MPI_Request type which receiver can poll to see if message is
available.

e Can you think of a problem for a high-level Haskell binding?

Problem: how much memory to allocate on Irecv?

* The receiver doesn’t know how big the message is going to be.

e This is trouble if we are going to send and receive arbitrary Haskell data
structures.

e Can’t make receiver wait for the full message - i.e. block - that would defeat
the purpose of Irecv.

e Can you think of a solution?

One possible solution: futures!

data Future a =
Future
{ futureThread :: ThreadId
, futureStatus :: MVar Status
, futurevVal :: MVar a

waliltFuture :: Future a -> IO a
waltFuture = readMVar . futureval

pollFuture :: Future a -> IO (Maybe a)
pollFuture = tryTakeMvar . futureval

cancelFuture :: Future a -> IO ()
cancelFuture = killThread . futureThread

One possible solution: futures!

recvFuture ::

Serialize msg => Rank -> Tag -> Comm -> IO (Future msgqg)
recvFuture rank tag comm = do

valRef <- newEmptyMVar
statusRef <- newEmptyMVar
threadId <- forkIO $ do
(status, msg) <- recv rank tag comm
putMvVar valRef msg
putMVar statusRef status
return $ Future
{ futureThread = threadId
, futureStatus = statusRef
, futureval = valRef }

One possible solution: futures!

type Msg = [Int]

msg :: Msg
msg = [1..5000000]

main :: IO ()
main = mpi $ do
rank <- commRank commWorld

when (rank == sender) $
send msg receiver tag commWorld
when (rank == receiver) $ do

future <- recvFuture sender tag commWorld
busyWork 1000

result <- waitFuture future

print (length (result :: Msg))

The future and beyona

e Probably end up with three levels in the Haskell bindings:

1. Control.Parallel.MPI.Internal

2. Control.Parallel.MPI.Array

3. Control.Parallel.MPI

e Ultimately want to build more abstract operations on top of the bindings:
e Parallel strategies.
e MapReduce.

e \Write some parallel applications (the fun part).

