
Bernie Pope, bjpope@unimelb.edu.au

COMP10001 Foundations of Computing!
Semester 2 2014!
Lecture 29 (advanced lecture, not examinable)

How Python works

1



COMP10001 Foundations of Computing, Semester 2 2014

Outline

• What are programming languages?!
• Syntax analysis.!
• Translation to bytecode.!
• Execution.!
• Other ways of implementing programming languages.

2



COMP10001 Foundations of Computing, Semester 2 2014

What are programming languages?

• Programming languages are for humans …!

• … to describe computations …!

• ... which can be translated to run effectively on 
machines.!

• The syntax of the language is a powerful and complex 
user interface.

3



COMP10001 Foundations of Computing, Semester 2 2014

What are programming languages?
• Programming languages are examples of formal languages.!

• They have an unambiguous grammar (syntax).!

• The have a precise meaning (semantics).!

• Compare with natural languages (English, Chinese, 
Klingon, etcetera):!

• Ambiguous and incomplete grammar (usually defined 
post hoc).!

• Imprecise semantics (very hard to define, circular).

4



COMP10001 Foundations of Computing, Semester 2 2014

Incomplete and wrong history of programming languages

• Highlights:!

!

• 1940s - Various "computers" are "programmed" using 
direct wiring and switches. Engineers do this in order to 
avoid the tabs versus spaces debate.

5

http://james-iry.blogspot.com.au/2009/05/brief-incomplete-and-mostly-wrong.html 



COMP10001 Foundations of Computing, Semester 2 2014

Incomplete and wrong history of programming languages

• 1972 - Dennis Ritchie invents a powerful gun that shoots 
both forward and backward simultaneously. Not 
satisfied with the number of deaths and permanent 
maimings from that invention he invents C and Unix.

6

http://james-iry.blogspot.com.au/2009/05/brief-incomplete-and-mostly-wrong.html 



COMP10001 Foundations of Computing, Semester 2 2014

Incomplete and wrong history of programming languages

• 1995 - Brendan Eich reads up on every mistake ever 
made in designing a programming language, invents a 
few more, and creates LiveScript. Later, in an effort to 
cash in on the popularity of Java the language is 
renamed JavaScript. Later still, in an effort to cash in on 
the popularity of skin diseases the language is renamed 
ECMAScript.

7

http://james-iry.blogspot.com.au/2009/05/brief-incomplete-and-mostly-wrong.html 



COMP10001 Foundations of Computing, Semester 2 2014

Python’s execution pipeline

interpretcompilelex parse

Python source code Effect on the world

tokens AST byte!
code



COMP10001 Foundations of Computing, Semester 2 2014

Lexical analysis

• Recognises the tokens of the language (strings, 
variables, numbers, punctuation, comments etcetera).!

• Input is a sequence of characters, output is a sequence 
of tokens.

9



COMP10001 Foundations of Computing, Semester 2 2014

Lexical analysis
>>> from StringIO import StringIO!

>>> from tokenize import (generate_tokens, tok_name)!

>>>!

>>> stringIO = StringIO('x = y + 4')!

>>> for t in generate_tokens(stringIO.readline):!

...     print(tok_name[t[0]], repr(t[1]))!

...!

('NAME', "'x'")!

('OP', "'='")!

('NAME', "'y'")!

('OP', "'+'")!

('NUMBER', "'4'")!

('ENDMARKER', "''")

10



COMP10001 Foundations of Computing, Semester 2 2014

Lexical analysis
>>> from StringIO import StringIO!

>>> from tokenize import (generate_tokens, tok_name)!

>>>!

>>> stringIO = StringIO('x = y + 4')!

>>> for t in generate_tokens(stringIO.readline):!

...     print(tok_name[t[0]], repr(t[1]))!

...!

('NAME', "'x'")!

('OP', "'='")!

('NAME', "'y'")!

('OP', "'+'")!

('NUMBER', "'4'")!

('ENDMARKER', "''")

11

We use generate_tokens 
in utils.py in Project 3.



COMP10001 Foundations of Computing, Semester 2 2014

Python has a formal grammar
file_input: (NEWLINE | stmt)* ENDMARKER!

stmt: simple_stmt | compound_stmt!

simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE!

small_stmt: expr_stmt | print_stmt | del_stmt | pass_stmt | 
flow_stmt | import_stmt | global_stmt | exec_stmt | assert_stmt!

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | 
with_stmt | funcdef | classdef | decorated!

... etcetera …!

see: https://docs.python.org/2.7/reference/grammar.html

12

https://docs.python.org/2.7/reference/grammar.html


COMP10001 Foundations of Computing, Semester 2 2014

Parsing produces an Abstract Syntax Tree
>>> from ast import (parse, dump)!

>>> tree = parse('x = y + 4')!

>>>!

>>> dump(tree, annotate_fields=False)!

"Module([Assign([Name('x', Store())], BinOp(Name('y', Load()), Add(), Num(4)))])"!

!
!
!
!
!

13

Module

Assign

x Add

y 4



COMP10001 Foundations of Computing, Semester 2 2014

Bytecode

• The Abstract Syntax Tree is translated (compiled) into 
bytecode.!

• Bytecode is a collection of roughly 150 instructions for a 
virtual machine.!

• Each instruction consists of a single 8 bit (byte) opcode 
followed by an optional 16 bit operand.

14



COMP10001 Foundations of Computing, Semester 2 2014

Bytecode

An example bytecode instruction in binary:!

    !

   01111100        0000000000000001!

!

!

15

Opcode for the LOAD_FAST!
bytecode instruction

Operand (the integer 1)



COMP10001 Foundations of Computing, Semester 2 2014

Bytecode
>>> from dis import dis!

>>> def f(y):!

...     x = y + 4!

...     return x!

... !

>>> dis(f)!

  3           0 LOAD_FAST                0 (y)!

              3 LOAD_CONST               1 (4)!

              6 BINARY_ADD          !

              7 STORE_FAST               1 (x)!

!
  5          10 LOAD_FAST                1 (x)!

             13 RETURN_VALUE        

16



COMP10001 Foundations of Computing, Semester 2 2014

Bytecode
>>> from dis import dis!

>>> def f(y):!

...     x = y + 4!

...     return x!

... !

>>> dis(f)!

  3           0 LOAD_FAST                0 (y)!

              3 LOAD_CONST               1 (4)!

              6 BINARY_ADD          !

              7 STORE_FAST               1 (x)!

!
  5          10 LOAD_FAST                1 (x)!

             13 RETURN_VALUE        

17

Source code line 
numbers.



COMP10001 Foundations of Computing, Semester 2 2014

>>> from dis import dis!

>>> def f(y):!

...     x = y + 4!

...     return x!

... !

>>> dis(f)!

  3           0 LOAD_FAST                0 (y)!

              3 LOAD_CONST               1 (4)!

              6 BINARY_ADD          !

              7 STORE_FAST               1 (x)!

!
  5          10 LOAD_FAST                1 (x)!

             13 RETURN_VALUE        

Bytecode

18

Bytecode 
instruction offsets.



COMP10001 Foundations of Computing, Semester 2 2014

>>> from dis import dis!

>>> def f(y):!

...     x = y + 4!

...     return x!

... !

>>> dis(f)!

  3           0 LOAD_FAST                0 (y)!

              3 LOAD_CONST               1 (4)!

              6 BINARY_ADD          !

              7 STORE_FAST               1 (x)!

!
  5          10 LOAD_FAST                1 (x)!

             13 RETURN_VALUE        

Bytecode

19

Instruction 
Opcodes.



COMP10001 Foundations of Computing, Semester 2 2014

>>> from dis import dis!

>>> def f(y):!

...     x = y + 4!

...     return x!

... !

>>> dis(f)!

  3           0 LOAD_FAST                0 (y)!

              3 LOAD_CONST               1 (4)!

              6 BINARY_ADD          !

              7 STORE_FAST               1 (x)!

!
  5          10 LOAD_FAST                1 (x)!

             13 RETURN_VALUE        

Bytecode

20

Instruction 
Operands.



COMP10001 Foundations of Computing, Semester 2 2014

Bytecode
• Most bytecode instructions fall into one of the following four categories:!

1. Control flow:!

• JUMP_ABSOLUTE, RETURN_VALUE, POP_JUMP_IF_FALSE …!

2. Variable manipulation:!

• LOAD_FAST, STORE_FAST, LOAD_GLOBAL, STORE_GLOBAL …!

3. Stack manipulation:!

• ROT_TWO, POP_TOP, DUP_TOP …!

4. Primitive operations!

• MAKE_FUNCTION, LOAD_ATTR, BUILD_LIST, BINARY_ADD…

21



COMP10001 Foundations of Computing, Semester 2 2014

Compilation
• Translates the Abstract Syntax Tree into bytecode 

instructions for the Python Virtual Machine.!

• Input is an Abstract Syntax Tree, output is a code 
object.!

• The code object might be loaded directly into the 
computer’s memory and interpreted immediately, 
or it might be saved to file.!

• The .pyc files you see in IVLE are just serialised 
code objects.

22



COMP10001 Foundations of Computing, Semester 2 2014

Compilation

• Compilation converts the nested tree structure of the 
AST into a linear sequence of instructions.!

• The linear sequence of instructions reflects the 
sequential nature of program execution.

23



COMP10001 Foundations of Computing, Semester 2 2014

Execution
• Compiled Python bytecode is executed by an interpreter which carries 

out the behaviour of the Virtual Machine.!

• In addition to decoding and executing bytecode instructions, the 
interpreter provides the following functionality:!

• A stack for keeping track of local variables, intermediate values 
and control flow. !

• A heap for storing Python objects (pointed to by global variables 
and local variables on the stack). !

• Automatic memory management (called garbage collection). !

• Input and output via the operating system. 

24



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
y = 2!
x = y + 4

Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
y = 2!
x = y + 4

Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2!
x = y + 4



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2!
x = y + 4



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2!
x = y + 4



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2!
x = y + 4

6



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"

6

"x"

y = 2!
x = y + 4



COMP10001 Foundations of Computing, Semester 2 2014

Example execution
Python source

LOAD_CONST 0!
STORE_NAME 0!
LOAD_NAME 0!
LOAD_CONST 1!
BINARY_ADD!
STORE_NAME 1!

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"

6

"x"

y = 2!
x = y + 4



COMP10001 Foundations of Computing, Semester 2 2014

Other ways of implementing languages

• In today’s lecture we have described how the standard 
implementation of Python works (CPython). This is the one 
you use on IVLE.!

• CPython is written in the C programming language.!

• There are other alternative implementations of Python, such as:!

• Jython (compiles to Java bytecode)!

• PyPy (just-in-time compilation to machine code)!

• IronPython (implemented in C#, runs on .NET)

33



COMP10001 Foundations of Computing, Semester 2 2014

Other ways of implementing languages

• Some language implementations compile (translate) 
directly to machine language. !

• We tend to say such implementations are compiled, 
whereas CPython is interpreted, but the distinction is 
blurry. !

• Curiously most C compilers are written themselves in 
the C language, and they compile themselves! This is 
called bootstrapping. 

34



COMP10001 Foundations of Computing, Semester 2 2014

Homework

• If modern C compilers are written in C (and compile 
themselves), where did the first C compilers come from? !

• Would it be possible to implement Python in Python?

35


