
Bernie Pope, bjpope@unimelb.edu.au

Memory efficient parallelisation
of HiTIME in C++

!1

Melbourne Bioinformatics Lab Talk, 3 August 2018

HiTIME parallelisation

Outline

• Twin ion mass spectrometry

• HiTIME algorithm and initial implementation in Python

• Memory efficient parallelisation in C++

• Performance

• Discussion

!2

HiTIME parallelisation

Twin Ion Mass Spectrometry

• Typical scenario:

• A new drug is being tested.

• As it is metabolised new compounds (called
metabolites) are formed.

• These metabolites can affect the performance of the
drug and cause side effects.

!3

HiTIME parallelisation

Twin Ion Mass Spectrometry

!4

Paracetamol
(APAP) metabolites

observe that the
benzene ring

remains intact

Leeming et al. Analytical Chemistry, 2015

HiTIME parallelisation

Twin Ion Mass Spectrometry

• We want to discover these (novel) metabolites, typically
from a blood sample.

• We could use mass spectrometry to identify all
compounds in the blood, but …

• … blood contains thousands of other molecules which
could be confused with true drug metabolites.

• Proverbial needle in a haystack problem.

!5

HiTIME parallelisation

Twin Ion Mass Spectrometry
• Solution:

• Make two versions of the drug molecule:

1. normal

2. heavy

• In APAP, a heavy version can be made by substituting 12C with 13C in the
benzene ring.

• Observe that the normal and heavy versions have an expected mass
difference (about 6 Da).

• Despite the mass difference the two versions ought to have the same
chemical properties.

!6

HiTIME parallelisation

Twin Ion Mass Spectrometry
• Solution continued:

• Administer a 1:1 mixture of normal and heavy versions of the drug to the
test organism.

• Allow time to metabolise, then take a blood sample and run it through a
mass spectrometer.

• Search for pairs of peaks (twins) in the resulting spectra which:

• have the expected mass difference

• equal intensity (abundance)

• appear at the same time

• This twin ion signal is unlikely to occur by chance.

!7

HiTIME parallelisation

Twin Ion Mass Spectrometry

!8

Example of Paracetamol (APAP)

Normal (light)
APAP

Heavy APAP = +6.0201 Da
Leeming et al. Analytical Chemistry, 2015

HiTIME parallelisation

Twin Ion Mass Spectrometry

!9

Liquid Chromatography - Mass Spectrometry:
compounds in sample are separated by chromatography,
before being sent to mass spectrometer. This adds a time dimension.

https://commons.wikimedia.org/wiki/File:Liquid_Chromatography_Mass_Spectrometer.png

HiTIME parallelisation

Twin Ion Mass Spectrometry

!10

Zoomed-in section of LC-MS data intensity (106)
(abundance)

retention time (s)
(chromatogram)

mass/charge
(mass spectrum)

Data is stored as a sequence of mass
spectra in retention time order

HiTIME parallelisation

HiTIME algorithm

• High resolution twin-ion metabolite extraction.

• An algorithm for the detection of twin-ion signals in
LC-MS data.

• Joint work with Andrew Isaac, Michael Leeming,
Richard O’Hair, William Donald and others.

• Published in Analytical Chemistry, 2015.

!11

HiTIME parallelisation

HiTIME algorithm
• Stencil convolution:

• Each data point in the input is scored based on some
function over its local neighbourhood of data points.

• Can be implemented as a sliding window.

• An example is the Sobel differentiation operator used in
image edge detection.

• HiTIME is a kind of stencil convolution, but the computation at
each point considers two windows. One for the normal mass,
and one for the heavy mass.

!12

HiTIME parallelisation

HiTIME algorithm

!13

input data
showing twin

ion peaks

ideal twin ion
model

output scored
data centred on
the normal mass

isotope

top down
view of

output as
heat map

HiTIME parallelisation

HiTIME algorithm
output_spectra = []

for spectrum in time_sorted(input_spectra):

 output_spectrum = []

 for (mass, intensity) in mass_sorted(spectrum):

 low = get_neighbourhood(mass)

 high = get_neighbourhood(mass + delta)

 new_intensity = score(intensity, low, high)

 output_spectrum.append(mass, new_intensity)

output_spectra.append(output_spectrum)

!14

HiTIME parallelisation

output_spectra = []

for spectrum in time_sorted(input_spectra):

 output_spectrum = []

 for (mass, intensity) in mass_sorted(spectrum):

 low = get_neighbourhood(mass)

 high = get_neighbourhood(mass + delta)

 new_intensity = score(intensity, low, high)

 output_spectrum.append(mass, new_intensity)

output_spectra.append(output_spectrum)

HiTIME algorithm

!15

Requires access to
neighbouring spectra

+/- in time

HiTIME parallelisation

HiTIME algorithm

• The original implementation of HiTIME was in Python.

• This enabled rapid prototyping.

• However, runtime performance was not good.

• We parallelised the code using MPI, and used 480 cores
to complete one large input sample in under an hour.

• Not convenient and users don’t always have ready
access to HPC clusters.

!16

HiTIME parallelisation

HiTIME algorithm

• Our goal was to reimplement the algorithm to be time
and space efficient and thus be usable on modest
hardware.

• We chose C++ for raw sequential performance and
because of good mass spectrometry support from the
OpenMS library (www.openms.de).

• Original sequential port to C++ was done by VLSCI
intern Luke Zappia using the ProteoWizard library.

!17

HiTIME parallelisation

A memory inefficient parallelisation

• Stencil convolutions are popular in HPC because they
are data parallel, therefore relatively easy to parallelise
if you have all your input data in memory.

!18

HiTIME parallelisation

A memory inefficient parallelisation
• Load all the input spectra into memory from input file.

• Partition the spectra into equal sized time segments. One
for each CPU thread.

• Apply the HiTIME algorithm to each segment in parallel.

• Write output spectra to memory (necessary because of
parallel execution over segments).

• When all CPU threads are finished, write output spectra
to file in time order.

!19

HiTIME parallelisation

A memory inefficient parallelisation

• This parallelisation is easy to implement and scales
well, but requires at least 2N memory, where N is the
size of the input data.

• We have high resolution data sets which are 14GB in
size.

• Ideally we want an algorithm which does not need to
keep all spectra in memory at once, and can write
output spectra to file as the computation proceeds.

!20

HiTIME parallelisation

Memory efficient parallelisation

• Leapfrog. Each thread works on the next unsolved
spectrum, in retention time order:

next_spectrum_id = get_next_spectrum_todo()

while (next_spectrum_id < num_spectra):

 output_spectrum = score(next_spectrum_id)

 put_spectrum(next_spectrum_id, output_spectrum)

 next_spectrum_id = get_next_spectrum_todo()

!21

HiTIME parallelisation

Memory efficient parallelisation
• Challenges:

1. Threads are working on highly overlapping
windows of spectrums. We don’t want to re-read the
same spectrum from file many times (nor have
multiple copies in memory).

2. We cannot guarantee that threads will complete in
time order, so we may not be able to immediately
write an output spectrum to file. Some in-memory
reordering may be needed.

!22

HiTIME parallelisation

Memory efficient parallelisation
• Solution to challenge 1:

• Keep a cache of spectra that are currently being used. Share this
between threads.

• If the cache is efficient, we should only ever read each spectrum
once from file and keep only one copy in memory.

• What cache retention policy?

• We chose a least recently used (LRU) cache because it is fast to
implement and likely to give good temporal locality.

• OpenMS provides a IndexedMzMLFileLoader, which allows
random access to spectrums within the input file.

!23

HiTIME parallelisation

Memory efficient parallelisation

• Challenge 1b:

• But what if we evict a spectrum from the LRU
cache but it is actually needed by one or more
executing threads (i.e. cache is too small)?

• We must keep it in memory even though it isn’t in
the cache. We must free its memory when no longer
needed by running threads.

!24

HiTIME parallelisation

Memory efficient parallelisation

• Solution to challenge 1b:

• The input spectrum LRU cache holds C++ shared
pointers (shared_ptr) to spectrums.

• Shared pointers are reference counted. So they hold
onto the data until the last remaining reference is
deallocated.

!25

HiTIME parallelisation

Memory efficient parallelisation
• Solution to challenge 2:

• Keep a priority queue (heap) of output spectra, ordered
by (retention) time.

• A spectrum is only written to disk when it is the next one
pending in time order.

• If each thread does roughly the same amount of work
then the queue will not grow very large.

• Leapfrog means that we generally work on input spectra
in retention time order.

!26

HiTIME parallelisation

Performance

• Input test data is a 14 GB high resolution LC-MS data
file from a twin-ion experiment for APAP metabolites.
Same data as previous publication.

• Recorded elapsed wall-time and maximum resident set
size (RSS) for HiTIME-CPP on 1 to 32 CPU cores on
Snowy (2.3GHz Intel Xeon E5-2698 v3, 32 cores per
node).

!27

HiTIME parallelisation

Performance

!28

HiTIME parallelisation

Performance

!29

HiTIME parallelisation

Performance

!30

HiTIME parallelisation

Discussion
• All parallelisations produce bit-identical output. But we still have some correctness testing

to do.

• We also made memory and sequential time performance improvements on the HiTIME
implementation along the way, which were made somewhat easier by the natural code
refactoring that happened during the parallelisation.

• Modern C++ has lots of nice features, including easy-to-use threading, however library
packaging is far behind other languages.

• Building the code is challenging due to OpenMS dependencies and its use of CMake.

• We made a Docker container to make this easier and reproducible. Has nice benefits for
Travis CI too.

• Andrew Isaac will discuss the inner workings of the scoring algorithm in an upcoming lab
talk.

• Code is here: https://github.com/bjpop/HiTIME-CPP

!31

https://github.com/bjpop/HiTIME-CPP

