
Bernard Pope
Lead Bioinformatician, Cancer and Clinical Genomics
Victorian Health and Medical Research Fellow
Melbourne Bioinformatics
The University of Melbourne, Australia

Hatching a plot on the
command line

!1

Melbourne Bioinformatics Seminar

Hatch

Plotting tabular data
• Like most bioinformaticians and data analysts I spend a lot

of time dealing with tabular data:

• VCF

• CSV, TSV

• BED

• Often this data is quite large: lots of rows, lots of columns,
lots of files.

• Unsurprisingly, I also do a lot of plotting of this data.

!2

Hatch

Plotting tabular data
• Of course you can plot the data in R, Python, spreadsheets etc.

• However, most of the plotting I do is the same kind of thing,
e.g:

• Plot the distribution of values by group.

• Make a scatter plot comparing two variables.

• … line plots, bar plots, heat maps and so on.

• While Python + Pandas + Seaborn can do what I want,
writing custom plotting code is tedious and repetitive.

!3

Hatch

Reinventing the wheel
• Previously I used to use Gnuplot, but I find it rather

fiddly.

• Unsurprisingly, there’s plenty of other similar tools
online, but:

• They are controlled by other people.

• Their tastes and needs are often different to mine.

• So, in the grand tradition of Bioinformatics, I reinvented
the wheel.

!4

Hatch

hatch
• https://github.com/bjpop/hatch

• 2D plots from tabular data in (wide) CSV/TSV, output to PNG:

• Histograms (regular and cumulative)

• Distributions by group (box and violin)

• Scatter plots

• Line plots

• Heatmaps

• Counts (bar plots)

• Row filtering.

• Essentially a command line wrapper around Python + Pandas + Seaborn (and thus
Numpy and Matplotlib).

!5

Hatch

installation

$ git clone https://github.com/bjpop/hatch

$ python3 -m venv hatch_dev

$ source hatch_dev/bin/activate

$ pip install -U /path/to/hatch

!6

Plan to eventually support PyPI,
conda, Docker etcetera installs.

Hatch

Aside: repo was started with Bionitio

• The hatch repository was created using Bionitio!

• Easy to get started.

• Has (some) batteries included.

!7

Hatch

Getting help
$ hatch -h

usage: hatch [-h] [-v] {hist,dist,scatter,line,count,heatmap} ...

Generate plots of tabular data

optional arguments:

 -h, --help show this help message and exit

 -v, --version show program's version number and exit

Plot type:

 {hist,dist,scatter,line,count,heatmap}

 sub-command help

 hist Histograms of numerical data

 dist Distributions of numerical data

 scatter Scatter plots of numerical data

 line Line plots of numerical data

 count Counts (bar plots) of categorical data

 heatmap Heatmap of two categories with numerical values

!8

Hatch

Getting help for a specific plot type
$ hatch scatter -h

usage: hatch scatter [-h] [--outdir DIR] [--filetype FILETYPE] [--name NAME]

 [--logfile LOG_FILE] [--nolegend] [--filter EXPR]

 [--navalues STR] [--title STR] [--width SIZE]

 [--height SIZE] --xy X,Y [X,Y ...] [--logx] [--logy]

 [--xlim LOW HIGH LOW HIGH] [--ylim LOW HIGH LOW HIGH]

 [--hue FEATURE] [--size FEATURE] [--alpha ALPHA]

 [--linewidth WIDTH]

 DATA

positional arguments:

 DATA Filepaths of input CSV/TSV file

optional arguments:

 -h, --help show this help message and exit

 --outdir DIR Name of optional output directory.

 --filetype FILETYPE Type of input file

 --name NAME Name prefix for output files

 … etc etc …

!9

Output truncated to
fit on slide

Hatch

Simple example

$ head -1 iris.csv

sepal_length,sepal_width,petal_length,petal_width,species

$ hatch dist --columns sepal_length --group species -- iris.csv

!10

Output goes to:
iris.sepal_length.species.dist.png

Hatch

Simple example

!11

Hatch

Simple example

$ hatch dist --columns sepal_length --group species \

 --type violin -- iris.csv

!12

Hatch

Simple example

!13

Hatch

Filtering rows

• The --filter flag takes a Python expression as its
argument.

• The expression uses Pandas data frame query notation
to filter rows.

• Rows which make the expression true are retained, all
others are discarded.

!14

Hatch

More complex example

$ head -1 titanic.csv
survived,pclass,sex,age,sibsp,parch,fare,embarked,class,who,adult_m
ale,deck,embark_town,alive,alone

$ hatch count --columns class embark_town \

 --filter "survived == 0" -- titanic.csv

!15

Outputs go to:
titanic.class.count.png

titanic.embark_town.count.png

Hatch

More complex example

!16

Hatch

Performance on large(ish) datasets

• The test file varlap.csv has 11 columns and ~ 1.4
million rows, and is 82 MB in size.

• That is larger than the maximum number of rows that
Excel can handle.

• While it is not HUGE, it is big enough to be a problem
for many tools.

!17

Hatch

Performance on large(ish) datasets

$ time \

 hatch scatter --xy gnomad,vaf \

 --filter "callers == 'Sanger' and vaf >= 0.2" \

 --xlim 0 0.015 --ylim 0 1 --title "gnomAD versus VAF" -- \

 varlap.csv

real 0m5.701s

user 0m4.132s

sys 0m1.101s

!18

Only 5 seconds to plot the graph!

Output goes to:
varlap.gnomad.vaf.scatter.png

Hatch

Performance on large(ish) datasets

!19

Hatch

Data transformations?
• Sometimes CSV data comes in an inconvenient format, which can

be a pain for plotting.

• Maybe hatch should handle some basic data transformations, e.g.
reshape?

• Generally I’ve decided against this (except for filtering) because
there are some good tools that can already do it:

• xsv (really fast!)

• miller, csvkit

• But I might change my mind about this.

!20

Hatch

Future work
• Features are added as I need them.

• However, I’d really like some other users:

• Test it out, find bugs, suggest/add features.

• Keep me honest, and motivate me to polish the sharp corners.

• More plot types.

• Better error messages and sanity checking.

• Some statistical calculations, e.g. ANOVA etc.

• Different plotting backends, e.g. Plotly for interactivity.

!21

