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The miniFP language

• Small functional language, intended for teaching. Ugly syntax borrowed from 
Schwartzbach’s notes (easy to parse, but annoying to use).

• Hindley/Milner style type inference, with let polymorphism.

• Data types: Bool, Int, List, ->

• No user defined types.

• Explicit fixed-point operator (fix).

• Minimal primitives (head, tail, cons, nil, zero, true, false, pred, succ, isZero, null, 
if-then-else).
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The miniFP language

let map = fix (\m -> \f -> \list ->
   if null list
      then nil
      else cons (f (head list)) (m f (tail list))
   fi
   end end end)
in map (\x -> succ x end) [0,1,2] end
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Graph representation of terms

head (fix (\rec -> cons 1 rec end))
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Tying the knot

• Step through the reduction of: head (fix (\rec -> cons 1 rec end))

• Observe the reduction of the fixed point carefully.

• The “infinite” list of ones becomes a cyclic graph. 

• Normal order reduction ensures that the program terminates.

• Diagrams generated by GraphViz. http://graphviz.org/

• The compiled program writes “dot graph” files at each important step in 
reduction.
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Step 1. The initial graph
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Step 1. The initial graph

This  is the root of the 
graph. It represents the 
value of the program.
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Step 2. unfold the fixed point
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Step 2. unfold the fixed point

fix f = f (fix f)

Builds a new application 
node.
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Step 3. copy the left child of the application
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Step 3. copy the left child of the application

Copy
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Step 4. substitute the parameter with the argument
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Step 4. substitute the parameter with the argument

The lambda node is 
overwritten with a 
indirection.
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Step 5. overwrite the application node with its result
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Step 5. overwrite the application node with its result

The application node 
is overwritten with a 
indirection.
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Step 6. overwrite the fix node with its result
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Step 6. overwrite the fix node with its result
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Step 6. overwrite the fix node with its result

Garbage, not 
reachable from the 
root node.
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Step 6. overwrite the fix node with its result

Infinite list of ones. 
Notice the cycle. The 
knot has been tied
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Step 7. overwrite head node with its result
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Step 7. overwrite head node with its result
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Step 7. overwrite head node with its result

This is the final answer 
of the program.
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The compiler

• Translates miniFP programs to C code.

• The output C code is a function which builds the initial graph representation of 
the program as a data structure in the heap.

• The output C code is linked with a library which contains a reduction engine.

• The reduction engine rewrites the graph until it reaches WHNF (or it loops).

• The final value is pretty printed on standard output.
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Compiled output

#include "build.h"
GraphPtr build (void)
{
   GraphPtr v_0 = HEAD;
   GraphPtr v_1 = FIX;
   GraphPtr v_2 = LAM;
   GraphPtr v_3 = CONS;
   GraphPtr v_4 = SUCC;
   EDGE(v_4,0,zero);
   EDGE(v_3,0,v_4);
   EDGE(v_3,1,v_2);
   EDGE(v_2,0,v_3);
   EDGE(v_1,0,v_2);
   EDGE(v_0,0,v_1);
   return v_0;
}
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Reduction engine

GraphPtr reduce (GraphPtr g)
{
   GraphPtr result = NULL;

   if (is_whnf (g))
   {
      return g;
   }
   else
   {
      switch (g->tag)
      {  
          /* ... reduce graph and build result ... */
      }
      indirect (g, result);
      return result;
   }
}
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Selected Literature

• Theorie des ensembles, Bourbaki (1954) (according to Shivers and Wand).

• Semantics and Pragmatics of the Lambda Calculus, Wadsworth (1971).

• The implementation of functional languages, (Chapter 12) Peyton Jones (1987).

• An algorithm for optimal lambda-calculus reduction, Lamping (1990).

• Lambda Calculi plus Letrec, Ariola and Blom (1997).

• Bottom up beta substitution, Shivers and Wand (2004).

• Lambda animator, Mike Thyer (2007). http://thyer.name/lambda-animator/


