
FPU Graph reduction

CSSE , The University of MelbourneBernie Pope, 2009

Simple graph reduction with visualisation

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Outline

• The miniFP language

• Graph representation of terms

• Tying the knot

• The compiler

• The reduction engine

• Literature

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

The miniFP language

• Small functional language, intended for teaching. Ugly syntax borrowed from
Schwartzbach’s notes (easy to parse, but annoying to use).

• Hindley/Milner style type inference, with let polymorphism.

• Data types: Bool, Int, List, ->

• No user defined types.

• Explicit fixed-point operator (fix).

• Minimal primitives (head, tail, cons, nil, zero, true, false, pred, succ, isZero, null,
if-then-else).

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

The miniFP language

let map = fix (\m -> \f -> \list ->
 if null list
 then nil
 else cons (f (head list)) (m f (tail list))
 fi
 end end end)
in map (\x -> succ x end) [0,1,2] end

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Graph representation of terms

head (fix (\rec -> cons 1 rec end))

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Tying the knot

• Step through the reduction of: head (fix (\rec -> cons 1 rec end))

• Observe the reduction of the fixed point carefully.

• The “infinite” list of ones becomes a cyclic graph.

• Normal order reduction ensures that the program terminates.

• Diagrams generated by GraphViz. http://graphviz.org/

• The compiled program writes “dot graph” files at each important step in
reduction.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 1. The initial graph

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 1. The initial graph

This is the root of the
graph. It represents the
value of the program.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 2. unfold the fixed point

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 2. unfold the fixed point

fix f = f (fix f)

Builds a new application
node.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 3. copy the left child of the application

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 3. copy the left child of the application

Copy

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 4. substitute the parameter with the argument

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 4. substitute the parameter with the argument

The lambda node is
overwritten with a
indirection.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 5. overwrite the application node with its result

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 5. overwrite the application node with its result

The application node
is overwritten with a
indirection.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 6. overwrite the fix node with its result

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 6. overwrite the fix node with its result

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 6. overwrite the fix node with its result

Garbage, not
reachable from the
root node.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 6. overwrite the fix node with its result

Infinite list of ones.
Notice the cycle. The
knot has been tied

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 7. overwrite head node with its result

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 7. overwrite head node with its result

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Step 7. overwrite head node with its result

This is the final answer
of the program.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

The compiler

• Translates miniFP programs to C code.

• The output C code is a function which builds the initial graph representation of
the program as a data structure in the heap.

• The output C code is linked with a library which contains a reduction engine.

• The reduction engine rewrites the graph until it reaches WHNF (or it loops).

• The final value is pretty printed on standard output.

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Compiled output

#include "build.h"
GraphPtr build (void)
{
 GraphPtr v_0 = HEAD;
 GraphPtr v_1 = FIX;
 GraphPtr v_2 = LAM;
 GraphPtr v_3 = CONS;
 GraphPtr v_4 = SUCC;
 EDGE(v_4,0,zero);
 EDGE(v_3,0,v_4);
 EDGE(v_3,1,v_2);
 EDGE(v_2,0,v_3);
 EDGE(v_1,0,v_2);
 EDGE(v_0,0,v_1);
 return v_0;
}

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Reduction engine

GraphPtr reduce (GraphPtr g)
{
 GraphPtr result = NULL;

 if (is_whnf (g))
 {
 return g;
 }
 else
 {
 switch (g->tag)
 {
 /* ... reduce graph and build result ... */
 }
 indirect (g, result);
 return result;
 }
}

FPU Graph reduction

Bernie Pope, 2009 CSSE , The University of Melbourne

Selected Literature

• Theorie des ensembles, Bourbaki (1954) (according to Shivers and Wand).

• Semantics and Pragmatics of the Lambda Calculus, Wadsworth (1971).

• The implementation of functional languages, (Chapter 12) Peyton Jones (1987).

• An algorithm for optimal lambda-calculus reduction, Lamping (1990).

• Lambda Calculi plus Letrec, Ariola and Blom (1997).

• Bottom up beta substitution, Shivers and Wand (2004).

• Lambda animator, Mike Thyer (2007). http://thyer.name/lambda-animator/

