
Step inside the GHCi debugger

by Bernie Pope 〈bjpop@csse.unimelb.edu.au〉

March 6, 2008

Major releases of GHC are highly anticipated events, especially because of all the
exciting new features they bring. The 6.8 series was a particularly impressive
example, which came with lots of goodies, including a shiny new debugger. In this
article we take the debugger out for a test run, and see what it can do.

Introduction

Anyone who follows the Haskell mailing lists for long enough knows that certain
topics are recurrent. A prominent example is debugging tools, and the apparent
lack thereof. See the thread entitled “modern language design, stone age tools” [1],
for a memorable lamentation on the matter.

Conventional wisdom says that lazy evaluation makes it difficult to apply tra-
ditional procedural debugging techniques to Haskell. Therefore, substantial effort
has been spent on researching more suitable approaches; a key outcome of this
work is Hat, the Haskell Tracer [2]. Hat provides several powerful tools, covering
different kinds of debugging styles, but it comes with a large performance cost, and
is not particularly well integrated with the predominant programming environment
(GHC), thus hampering its usability.

Recently GHC gained its own debugging tool, which was released with version
6.8.1 of the compiler. The debugger is less sophisticated than Hat, but it makes
up for that by being lightweight and tightly integrated with GHCi. The design
of the debugger has been directed by a “keep it simple” philosophy, which has
helped to keep development costs in check. An important consequence of this
pragmatism is the use of conventional procedural technology: breakpoints, and
execution stepping. While it is true that lazy evaluation does cause problems
for this approach, some steps have been taken to ameliorate them. In particular,



The Monad.Reader

the debugger supports printing of partially evaluated terms, and the user can
selectively force evaluation of suspended sub-terms from the command line.

In this article we will take a short tour of the main features of the debugger, and
hopefully encourage you to try it out on your own code. As with any programming
tool, there are lots of little details that have to be learned by the user, however
we make no attempt to be exhaustive. Please consult the GHC User’s Guide [3]
for a more comprehensive reference. If you are interested in implementation issues
please see the paper from the 2007 Haskell Workshop [4].

Getting started

To get started you need a recent version of GHC; anything from 6.8.1 onwards will
do. The examples in this article have been tested with 6.8.2, which is the latest
stable release at the time of writing. The debugger is built into GHCi, and it is
always enabled. You simply start GHCi like normal and you are ready to go. In
the rest of the article, interaction with GHCi is indicated like so:

*Main> putStrLn "Hello World"

Hello World

The prompt is indicated by *Main>, and text entered by the user is set in italics
to distinguish it from interpreter output. GHCi commands can be abbreviated to
a unique prefix, but here they are written in full for the sake of clarity.

One proviso is that, whilst GHCi supports two compilation modes – byte code
and object code – breakpoints are only supported in byte code. This makes object
code invisible in the debugger (but it is otherwise fully functional). Thus, break-
points cannot be set inside libraries (packages), because they are always compiled
to object code. In practice, this feature can be useful because it allows us to se-
lectively turn off debugging for certain “trusted” modules. This helps us focus on
the suspicious code, and improves performance because object code is roughly ten
times faster than byte code.

The debugging examples in this article are based on the small program in Fig-
ure 1. It reads a dictionary of computer terms in HTML format, and searches for
the definition of an input term. The dictionary data comes from the Dictionary of
Computer Terms [5], which can be downloaded as one large HTML file [6]. The
program assumes that the dictionary is saved in a file called Dictionary.html.
The HTML is parsed into a list of tags using the TagSoup package [7], which can
be obtained from hackageDB [8]. The (rather naive) search algorithm has two
parts. First, it scans the list of tags for the first occurrence of text which matches
the search term. Second, it scans the remaining list for the next item of text. If

2



Bernie Pope: Step inside the GHCi debugger

module Main where

import Text.HTML.TagSoup

import Maybe

dict = "Dictionary.html"

main = do

putStr "Enter a term to search for: "

term <- getLine

html <- readFile dict

let soup = parseTags html

putStrLn $ display $ searchTerm term soup

searchTerm :: String -> [Tag] -> Maybe String

searchTerm term (TagText text : rest)

| term == text = searchDef rest

| otherwise = searchTerm term rest

searchTerm term (_ : rest) = searchTerm term rest

searchTerm term [] = Nothing

searchDef :: [Tag] -> Maybe String

searchDef (TagText def : _) = Just def

searchDef (tag : rest) = searchDef rest

searchDef [] = Nothing

display :: Maybe String -> String

display = maybe "No match found." id

Listing 1: A program which searches for the definition of a term in a HTML
dictionary.

3



The Monad.Reader

found, the second piece of text is assumed to be the definition of the term. De-
spite the simplicity of the code, it works correctly in many cases. For example, it
returns the expected output on inputs such as C++ and Fortran. However, it is
not without fault. Searching for the definition of C (the programming language)
returns D, which is not supposed to happen – we will use the debugger to look
into this later in the next section. To be fair, it is not the most exciting bug in
the world, but it does allow us to show off some of the debugger’s functionality
without getting bogged down in details.

Breakpoints and single stepping

We can step through a computation, one expression at at time, using the :step

command:

*Main> :step main

The :step command has two modes of operation. In one mode – demonstrated
here – it takes an expression as an argument. The expression is used to start
a new computation with single stepping activated. In the other mode – which
we shall see shortly – it takes no arguments, and continues single stepping from
a breakpoint within an existing computation. As you would expect with single
stepping, evaluation stops as soon as it reaches an expression which is associated
with a breakpoint (regardless of whether the breakpoint is activated or not).

In our example, the first encountered breakpoint expression is the body of
main. When the computation stops at a breakpoint, control returns to the GHCi
command-line, which is indicated like so:

Stopped at Main.hs:(7,7)-(12,43)

_result :: IO () = _

[Main.hs:(7,7)-(12,43)] *Main>

Note that the prompt has changed to indicate that we are now inside a debugging
session. The location of a breakpoint expression is indicated using its source code
span. In this case, the body of main spans the coordinates (7,7)-(12,43) in the
file Main.hs. Coordinates are written as line-column pairs.

The source code of the current breakpoint expression can be printed using the
:list command:

[Main.hs:(7,7)-(12,43)] *Main> :list

6

7 main = do

8 putStr "Enter a term to search for: "

4



Bernie Pope: Step inside the GHCi debugger

9 term <- getLine

10 html <- readFile dict

11 let soup = parseTags html

12 putStrLn $ display $ searchTerm term soup

13

The breakpoint expression is highlighted (using an underline in this article), and
shown within a few lines of context.

Manually listing the code for every new breakpoint can become tedious. For-
tunately, GHCi can automatically execute commands on our behalf whenever a
breakpoint is reached, using the stop setting:

[Main.hs:(7,7)-(12,43)] *Main> :set stop :list

This instructs GHCi to execute :list whenever execution stops at a breakpoint
(some people like to put this setting in their GHCi configuration file). Of course
other actions are possible by changing the setting appropriately. The effect of the
new stop setting can be seen when we take another step in the execution:

[Main.hs:(7,7)-(12,43)] *Main> :step

Stopped at Main.hs:8:3-39

_result :: IO () = _

7 main = do

8 putStr "Enter a term to search for: "

9 term <- getLine

Now the code of the breakpoint is automatically listed, which happens to be the
first statement of the do-block in the body of main. Unlike previously, :step was
not given any arguments in this instance, hence execution continued from the last
breakpoint.

Most debuggers for imperative languages allow the user to choose between step-
ping into function calls, and stepping over them. It is not so easy to step over a
function call in a lazy language because function calls are not always evaluated in
a depth-first fashion. Consequently, the debugger does not provide this function-
ality. However, restricted versions of the :step command are available, which can
limit the visited expressions to a module or a top-level declaration (:stepmodule
and :steplocal).

By now you have probably noticed the appearance of the following line at each
of the breakpoints:

_result :: IO () = _

This is a fresh variable (conjured up by GHCi) which is bound to the value of the
current breakpoint expression. The type of the variable is displayed along with its

5



The Monad.Reader

value. In this particular case _result has type IO (). Values which have not yet
been computed (called thunks) are printed as underscores, as is the case above.
As we shall see shortly, the free variables of the current breakpoint expression are
also bound at the debugging prompt, and they are displayed in a similar fashion.

One of the most useful aspects of the debugger is that the prompt provides the
full power of GHCi. At each breakpoint the _result of the expression and its free
variables are in scope. Having the debugger integrated into the interpreter means
that we can manipulate those intermediate values as first class citizens. That is to
say, we can not only print those values, but we can compute with them too! For
example, _result is currently bound to an IO action, and although it cannot be
printed as a term (because it is abstract), we can run the action and observe its
effect simply by evaluating it:

[Main.hs:8:3-39] *Main> _result

Enter a term to search for:

The ability to compute with intermediate values provides a powerful mechanism
for observation. We can issue customised commands for inspecting values, using
the full expressiveness of Haskell. This is especially useful for large and/or complex
structures which are too unwieldy to print in entirety. It is also worth noting that
when the values bound at the prompt are functions, they can be called in the
normal way, allowing us to observe their behaviour on whatever arguments we
choose.

An interesting feature of the debugger is that it supports nested breakpoints.
This is necessary because we can evaluate arbitrary expressions at the debugging
prompt, including ones which themselves have breakpoints. For example, from the
current breakpoint we can start single stepping in a different expression:

[Main.hs:8:3-39] *Main> :step display (Just "foo")

Stopped at Main.hs:27:10-35

_result :: Maybe String -> [Char] = _

26 display :: Maybe String -> String

27 display = maybe "No match found." id

28

... [Main.hs:27:10-35] *Main>

The ellipsis in the new prompt indicates that we have stopped at a nested break-
point, and the previous breakpoint is now pending. An arbitrary number of nest-
ings is supported, and GHCi keeps a stack of pending computations. When the top
computation on the stack is completed, the next one down is resumed. Obviously
it can become difficult to keep track of the stack of computations in your head,
therefore GHCi provides a command for printing it out:

6



Bernie Pope: Step inside the GHCi debugger

... [Main.hs:27:10-35] *Main> :show context

--> main

Stopped at Main.hs:8:3-39

--> display (Just "foo")

Stopped at Main.hs:27:10-35

The current debugging computation can be discarded using the :abandon com-
mand:

... [Main.hs:27:10-35] *Main> :abandon

[Main.hs:8:3-39] *Main>

Notice the change in the prompt which indicates we have returned to the earlier
breakpoint, and no more breakpoints are pending. Abandoning from this point
discards the whole debugging session and take us back to the normal GHCi prompt:

[Main.hs:8:3-39] *Main> :abandon

*Main>

For any sizable computation, single stepping is only going to get us so far, and
we need to be able to take leaps as well. As would be expected, the debugger allows
us to toggle breakpoints at specific program locations, and continue execution until
an active breakpoint is encountered. The :break command activates breakpoints,
providing a number of ways to refer to program locations, such as function names,
line numbers, and source spans. One line of code can contain multiple breakpoint
expressions, so we have to be careful with how the locations are specified. The
rules for picking an appropriate breakpoint location are somewhat intricate; see
the section on setting breakpoints in the User’s Guide for a thorough treatment.

As noted earlier, there is a bug in the example program which is triggered when
we try to search for the definition of the term C. It returns the string D, when we
expect to see something which defines the C programming language.

To diagnose the bug we want to find out what happens just after the text tag
containing C is found in the list of HTML tags. Therefore, a good place to set a
breakpoint is on line 16, on the expression ‘searchDef rest’. At this point we
know the term has been found, and we can try to determine what goes wrong in
the search for the definition:

*Main> :break 16 20

Breakpoint 0 activated at Main.hs:16:20-33

In this case it is necessary to specify both the line number and the column number
of the expression, because there is another breakpoint expression on the same line:
the left-hand-side of the guarded equation. If we were to specify the line number

7



The Monad.Reader

alone, GHCi would choose the leftmost subexpression that begins and ends on
that line, which is not the one we want. Therefore, the column number is needed
to disambiguate. We have chosen the starting column of the expression, but any
column inside its span will do.

Now we can run the program and wait for the breakpoint. There are no special
commands to invoke, we just do it in the normal way:

*Main> main

The program behaves as usual, and we are prompted for input:

Enter a term to search for: C

After a short amount of time the breakpoint is reached:

Stopped at Main.hs:16:20-33

_result :: Maybe String = _

rest :: [Tag] = _

15 searchTerm term (TagText text : rest)

16 | term == text = searchDef rest

17 | otherwise = searchTerm term rest

Note that, in addition to _result, the variable rest is bound at the prompt,
because it is free in the current breakpoint expression.

At this point we know that the search term has been located, and from the be-
haviour of the program, we know that the wrong definition is eventually returned.
To help us understand the cause of the problem, we want to know what tags ap-
pear just after the search term, up until the erroneous definition is found (the next
TagText token). We could print out the value of rest, but as a precaution, we
first check its length:

[Main.hs:16:20-33] *Main> length rest

302250

Clearly it is far too big to print the whole list. However, we only really want to
view a prefix of the list, up until the next TagText. We can find out exactly how
big that prefix is:

[Main.hs:16:20-33] *Main> length (fst (break (~== TagText "") rest))

6

This expression splits rest into two parts – (1) everything before the first TagText
token, and (2) everything else – and it returns the length of the first part. It uses
the partial match operator ~= from the TagSoup library, along with fst, break
and length from the Prelude. Fortunately the prefix is short, so we can safely
print it out:

8



Bernie Pope: Step inside the GHCi debugger

[Main.hs:16:20-33] *Main> take 7 rest

[TagClose "a",TagClose "span",TagClose "dt",TagOpen "dt" [],

TagOpen "span" [("class","sect1")],TagOpen "a" [("href","#d")],

TagText "D"]

Obviously we are looking in the wrong place in the dictionary for the definition
of the C programming language. A quick search for "#d" in the original HTML
file reveals the cause of the problem: TagText "C" first appears in the file in
the alphabetic index of terms near the beginning. No wonder the next TagText

corresponds to D. The bug stems from an incorrect initial assumption about the
structure of the HTML file. We can fix the bug in a number of ways, for example,
by providing a more specific set of tags in the pattern match of searchTerm.
However, the appropriate fix is something of a moot point in the context of this
article, and we will leave it open for debate.

Normally the bug would not be found so easily, and it is likely that we will
have multiple active breakpoints. The computation at the current breakpoint can
be resumed using :continue, and as expected, execution continues until the next
activated breakpoint is encountered or the computation ends. The current set of
activated breakpoints can be displayed using :show breaks, and breakpoints can
be deactivated using :delete.

Before this section concludes, there is one last issue to discuss, relating to the
variables that are bound at a breakpoint. Notice in the previous breakpoint, that
the variable rest was bound at the prompt, but, perhaps unexpectedly, the local
variables term and text were not bound. Attaching the set of all in-scope variables
to a breakpoint seems like a useful thing for the debugger to do, but it introduces
unfortunate performance penalties (see Section 4.3 of [4] for details). However,
attaching only the free variables of the breakpoint expression avoids these costs,
and a design decision was made accordingly. In some cases we really need to see the
values of other variables, besides the free ones, to understand what is happening in
the program. Thankfully there is a simple hack to work around the problem. We
can fake the needed free variables using const. For example, here is a modified
version of line 16 of the example program that includes term and text as free
variables in the right-hand-side expression:

| term == text = const (searchDef rest) (term, text)

This modification does not change the behaviour of the program in any significant
way because const returns its first argument as its result, discarding its second
argument altogether; lazy evaluation ensures that no extra work is done. An
optimising compiler could easily undo the ruse by inlining the definition of const,
but happily GHCi does not. Having to manually modify the program source code
for this purpose is fairly distasteful, and hopefully a more palatable solution will
emerge in future versions of the debugger.

9



The Monad.Reader

Printing values and forcing evaluation

Due to lazy evaluation, it is quite often the case that the variables bound at
breakpoints are thunks, or are only partially evaluated. This is particularly so
for _result, which is normally bound to a yet-to-be-evaluated expression. In the
example above, when we wanted to print the value of something, we just evaluated
a Haskell expression containing the appropriate variable. However, this can have
undesirable consequences:

I It could raise an exception or cause an unwanted side-effect.
I It might require a lot of unnecessary computation.
I It might trigger nested breakpoints (which can be confusing if you aren’t

expecting them).
I It will probably change the order in which things are evaluated, which may

not always be desirable.
To avoid these potential problems, the debugger provides the :print command

that conserves the state of evaluation of its argument. For example, suppose we
were at the last breakpoint in the example above, and we wanted to observe the
value of rest. Initially it is a thunk, and if we ask :print to display its value, we
get this output:

[Main.hs:16:20-33] *Main> :print rest

rest = (_t1::[Tag])

The output is fairly uninformative at the moment because rest is unevaluated, but
crucially it shows the term’s current state of evaluation without forcing it further.
An important side-effect of :print is that it binds any thunks in the printed term
to fresh variables, which enables us to refer them as separate entities. In this case
_t1 is bound to the one and only thunk, though it is admittedly a boring example
because it is just an alias for rest – more interesting examples follow.

Oftentimes we will want to selectively evaluate some thunks in order to make
sense of the term being printed. This can be done using the seq primitive function:

[Main.hs:16:20-33] *Main> seq _t1 ()

()

Operationally, seq forces the evaluation of its first argument to weak head normal
form (WHNF) before returning its second argument.1 Here we are only inter-
ested in the evaluation side-effect of seq, so the value of the second argument is
immaterial, and () plays the role of placeholder perfectly.

1Informally, a term is in WHNF if it is: a manifest function, a partial application, a saturated
application of a data constructor, a nullary constructor, or a primitive value. The arguments
of applications and the bodies of functions do not have to be in WHNF themselves.

10



Bernie Pope: Step inside the GHCi debugger

The use of seq to evaluate parts of a term is sufficiently common to warrant
its own command. GHCi does not provide such a command, but we can define it
ourselves using :def macro facility:

:def seq (\arg -> return ("seq (" ++ arg ++ ") ()"))

(It is a good idea to put this definition in your GHCi configuration file.) This
defines a new command called :seq (you can call it what you want), that takes an
argument string arg, and executes ‘seq (arg) ()’. The parentheses around arg

ensure syntactic correctness in case arg is a compound term. The use of return
in the definition is needed because :def requires an IO function.

Printing rest again reveals that it is now slightly more evaluated:

[Main.hs:16:20-33] *Main> :print rest

rest = TagClose (_t2::String) : (_t3::[Tag])

Now we have an application of the list constructor to two arguments. The head
element of the list is an application of TagClose to a thunk of type String. The
tail of the list is a thunk of type [Tag]. The newly uncovered thunks are bound
to fresh variables, allowing us to continue selectively evaluating parts of the term,
like so:

[Main.hs:16:20-33] *Main> :seq _t2

()

[Main.hs:16:20-33] *Main> :print rest

rest = TagClose (’a’ : (_t4::[Char])) : (_t5::[Tag])

As you can see, the presence of variables in the output can often inhibit readability,
so a simpler alternative is provided by :sprint, which just prints underscores in
the place of thunks:

[Main.hs:16:20-33] *Main> :sprint rest

rest = TagClose _ : _

Normally :print uses basic Haskell syntax to display terms. It can also be
configured to use the Show instance for the type of the term – if one is available, and
the term is fully evaluated – with the command :set -fprint-evld-with-show.

[Main.hs:16:20-33] *Main> :seq _t4

()

[Main.hs:16:20-33] *Main> :print rest

rest = TagClose [’a’] : (_t6::[Tag])

[Main.hs:16:20-33] *Main> :set -fprint-evld-with-show

[Main.hs:16:20-33] *Main> :print rest

rest = TagClose "a" : (_t7::[Tag])

11



The Monad.Reader

Notice that after the setting was made, the string argument of the TagClose

constructor was printed as "a", using the Show instance for String, whereas it
was previously printed as [’a’].

Sometimes we just want to print the final value of a term, without having to seq

all the thunks manually. There is a danger of triggering new breakpoints if we just
evaluate the term at the command line, which can be quite irritating. Therefore
the debugger provides the :force command, that evaluates a term completely,
and prints it out, but with all breakpoints temporarily disabled. Some care needs
to be taken with :force, because it might cause a lot of computation to happen,
and may even result in divergence.

History tracing and exceptions

Two of the more difficult to diagnose bugs in Haskell programs are unhandled
exceptions (such as the ubiquitous pattern-match-failure bugbear), and infinite
loops. Programmers using strict languages are accustomed to finding such bugs
using stack traces, but such a feature is difficult to implement in a lazy language.
In fact there are two kinds of stack traces that one might want in a lazy language:
one based on the dynamic stack, which shows the current evaluation context, and
another one based on a reconstructed lexical call stack, which reflects the depen-
dencies of the source code. Neither of these kinds of trace is currently available in
the debugger, although the developers are ruminating on some ideas at the mo-
ment. However, a basic kind of tracing facility is provided which is intended to
provide some insight into these kinds of problems. When tracing is turned on, the
debugger keeps a list of the N most recently visited breakpoint locations.2 This
list can be inspected at a breakpoint, thus providing information about what the
program was doing just prior to when it stopped.

We will consider a simple example of tracing by introducing an infinite loop
into the example program. Suppose that we inadvertently modified line 18 of the
program from:

searchTerm term (_ : rest) = searchTerm term rest

to:

searchTerm term rest = searchTerm term rest

Clearly searchTerm will diverge if this equation is ever evaluated.
To diagnose this kind of bug we must be able to make an educated guess about

when the program has entered the infinite loop. We can then turn the loop into an

2N is fixed at fifty at the moment, though it probably should be configurable.

12



Bernie Pope: Step inside the GHCi debugger

exception by sending an interrupt signal to the program (Control-C on Unix) at an
appropriate time. The debugger can stop on exceptions as if it had encountered
an ordinary breakpoint, which allows us to inspect the trace to find out what
the program was doing just before it was interrupted. The -fbreak-on-error

flag tells GHCi to stop on a fabricated breakpoint when an uncaught exception is
raised:

*Main> :set -fbreak-on-error

There is also a related flag called -fbreak-on-exception that causes execution
to stop on a breakpoint whenever an exception is raised, regardless of whether it
is eventually caught by the program.

Tracing imposes a significant runtime penalty, and so it is turned off by default.
It is turned on by the :trace command, which is bimodal in the same way as
:step – you can either start tracing a new computation, or you can begin tracing
from within an existing one. In this example we will run the program from the
beginning with tracing turned on:

*Main> :trace main

The program behaves as normal and we are asked to enter input:

Enter a term to search for: C

From here on the computation grinds away, and at some point we suspect a loop
has been entered, so we interrupt the program by hitting Control-C:

^C

Stopped at <exception thrown>

_exception :: e = GHC.IOBase.DynException

(Data.Dynamic.Dynamic _

ghc-6.8.2:Panic.Interrupted)

[<exception thrown>] *Main>

Now the computation has stopped at an exception breakpoint and control has
returned to the GHCi command line. Notice that the breakpoint is slightly different
from a normal one:

I It does not have a source code location because the exception corresponds
to an event rather than a particular expression in the program.

I A special variable called _exception is introduced which is bound to the
value of the exception, allowing us to see which particular exception was
thrown.

We can get an overview of the trace using the :history command:

13



The Monad.Reader

[<exception thrown>] *Main> :history

-1 : searchTerm (Main.hs:18:23-42)

-2 : searchTerm (Main.hs:(15,0)-(19,27))

-3 : searchTerm (Main.hs:18:23-42)

-4 : searchTerm (Main.hs:(15,0)-(19,27))

-5 : searchTerm (Main.hs:18:23-42)

...

For the sake of the article, the output above is truncated at five entries, but in
practice it shows the twenty most recent trace locations. The exact number of
entries to be viewed can be specified as an argument to :history, and currently
up to fifty are recorded.

Notice that the trace entries are numbered from -1 backwards. The idea is
that -1 indicates the breakpoint just prior to the current one, and -2 is the one
before that, and so on. Each entry in the trace records all the information of the
corresponding breakpoint, including bound variables, and we can traverse the list
of entries using the :back and :forward commands. For example, taking two
steps back and one forward brings us to entry number -1:

[<exception thrown>] *Main> :back

Logged breakpoint at Main.hs:18:23-42

_result :: Maybe String

rest :: [Tag]

term :: String

[-1: Main.hs:18:23-42] *Main> :back

Logged breakpoint at Main.hs:(15,0)-(19,27)

_result :: Maybe String

[-2: Main.hs:(15,0)-(19,27)] *Main> :forward

Logged breakpoint at Main.hs:18:23-42

_result :: Maybe String

rest :: [Tag]

term :: String

[-1: Main.hs:18:23-42] *Main>

We can print out the values of the bound variables, which can provide useful
information about why the exception (or loop) is occurring:

[-1: Main.hs:18:23-42] *Main> :print rest

rest = TagOpen (’h’ : (_t1::[Char])) (_t2::[Attribute]) :

(_t3::[Tag])

For a simple example like this one it is not too hard to spot the loop in the trace,
but real bugs can require a lot more investigative work. A common problem is that

14



Bernie Pope: Step inside the GHCi debugger

the trace gets polluted by noise, because many innocent functions are called near
the point of exception. A classic example is when combinator functions are used,
such as those in a custom state monad. Generally the combinator functions are
small and easy to verify for correctness, but they used to glue more complex parts
of the program together. The trace can easily be awash with breakpoints for the
combinator functions because they are called frequently. A useful workaround for
this situation is to compile the module containing the combinators to object code.
That way, no breakpoints are generated for the combinators, thus removing their
entries in the trace. Of course this presupposes that the combinators are found in
a separate module, and so some refactoring might be needed in practice.

Runtime type inference

So far we have shown the operation of the debugger in a fairly good light, but there
is one thorny issue that needs to be discussed. As noted earlier, variables which
are bound at a breakpoint have type information associated with them, but where
does that information come from? As it happens, GHCi does not attach detailed
source-level type information to terms at runtime. Therefore, type information
has to be reconstructed from two sources:

1. The internal representation of a term.
2. The static type environment which results from typechecking the program.

The reconstruction of a term’s type is called runtime type inference (RTTI). The
possibility of thunks inside a term means that sometimes only partial type infor-
mation can be gleaned from the representation alone. Also, terms can appear in
polymorphic contexts – such as the arguments to polymorphic functions – which
means that types inferred from the environment are not always concrete. A con-
sequence of these limitations is that, in some circumstances, RTTI is unable to
determine the most specific type for a term.

For a contrived example, suppose we have the two-tuple swap function defined
in a file called F.hs:

swap :: (a, b) -> (b, a)

swap (x, y) = (y, x)

We can take two steps in the execution of a call to swap like so:

*Main> :step swap (not True, not False)

Stopped at F.hs:2:0-19

_result :: (b, a) = _

[F.hs:2:0-19] *Main> :step

Stopped at F.hs:2:14-19

15



The Monad.Reader

_result :: (b, a) = _

x :: a = _

y :: b = _

This takes us to a breakpoint corresponding to the body of swap. Notice that x

and y are bound to thunks, and that their types are variables. We happen to know
that x and y will evaluate to booleans, but RTTI is not privy to that information;
it just sees thunks (which provide no type information) used within a polymorphic
context.

We get an error if we try to evaluate one of those thunks at the command line:

[F.hs:2:14-19] *Main> x

<interactive>:1:0:

Ambiguous type variable ‘a’ in the constraint:

‘Show a’ arising from a use of ‘print’ at <interactive>:1:0

Cannot resolve unknown runtime types: a

Use :print or :force to determine these types

GHCi inserts a call to print in front of x as part of its standard way of evaluating
expressions. The print function calls show, and therefore the type of x must be
an instance of the Show class. However, the type of x is a variable, which is not an
instance of Show, hence the ambiguity in the type of the expression.

In general, inferred types become more specific as terms become more evalu-
ated. Therefore, it often helps to seq a few thunks in a term to get better type
information:

[F.hs:2:14-19] *Main> :seq x

()

[F.hs:2:14-19] *Main> :type x

x :: Bool

[F.hs:2:14-19] *Main> x

False

Forcing the evaluation of x turns the thunk into a data constructor (False), which
provides enough information for RTTI to determine that the type of x is Bool.

A related problem occurs because of Haskell’s newtype construct. Recall that
newtype introduces a distinct type in the program, which has the same runtime
representation as an existing type. For example:

newtype Velocity = MkVelocity Double

This creates a new type called Velocity, with a constructor MkVelocity. Owing to
the semantics of newtype, the MkVelocity constructor is erased from the program

16



Bernie Pope: Step inside the GHCi debugger

at runtime, and thus the runtime representation of Velocity is the same as Double.
Obviously this has an effect on RTTI, because it uses the representation of terms as
a source of type information. When the static type environment provides no extra
information about a term, the debugger can infer the wrong type. For example it
might infer Double instead of Velocity.

In situations where we know what the type of a term should be, but RTTI
produces something which is less specific, or incorrect, we can use unsafeCoerce#

to obtain the desired type. For example, suppose that the RTTI had determined
the type of a variable v to be Double, but we know it should be Velocity. We
can coerce the type like so:

*Main> :set -fglasgow-exts

*Main> let v’ = GHC.Prim.unsafeCoerce# v :: Velocity

It is a bit tedious to type all this out, so it is useful to create a canned version using
GHCi’s :def facility – we leave this as an exercise for the enthusiastic reader. The
effect of the type conversion can be seen when we print out the values of v and v’:

*Main> v

3.2

*Main> v’

MkVelocity 3.2

It is anticipated that future versions of the debugger will include an improved
mechanism for determining the types of values bound at breakpoints, which avoids
some of the problems identified above.

Future work and conclusion

Hopefully by now you have a good idea about what the debugger is able to do, and
you might consider using it in the future. The implementation is still relatively
new, and there are many ways in which it could be extended. To a large extent,
new features will be directed by feedback from users; the more experience people
have with the tool, the better it will become.

Here is a non-exhaustive list of some ideas that might be developed in the future:
1. The debugger works with multi-threaded programs, but it isn’t particularly

targeted to the kinds of bugs that concurrency brings, such as race conditions.
It would be useful to have more control over thread scheduling, and also the
ability to look at the state of live threads, and perhaps even inspect their
stacks.

2. The debugger – and indeed GHC in general – provides a full featured API.
It is envisaged that other interfaces could be developed, and perhaps the
debugger can be integrated into existing IDEs.

17



The Monad.Reader

3. As noted above, stack tracing is a very desirable feature to have, but it
is not yet available. One possibility is to reuse some of the infrastructure
already provided by the runtime profiling system, but other options are also
possible, such as some kind of program transformation done in the early
stages of compilation.

4. Currently thunks are displayed as underscores, which provides no information
about their values. We can force their evaluation using seq, but this is not
always desirable. The runtime representation of byte-code-compiled thunks
does have source and free variable information attached to it, and work is
currently under way to make that information available to the user.

If you see the need for a particular feature in the debugger, don’t be afraid to
make a suggestion, and remember that GHC is open source, so contributions are
always welcome.

Acknowledgments

Thank you to José Iborra (Pepe) and Simon Marlow for reading earlier drafts of
this article, and making many helpful suggestions. Thank you to Wouter Swierstra
for agreeing to accept the article and waiting so patiently while I dilly-dallied.
Thank you to Microsoft Research for giving me the opportunity to work on the
debugger during a most enjoyable internship in 2007, and thank you to Simon
Marlow for being an excellent supervisor. Thank you to Peng Li and Srdjan Stipic
for befriending me during the internship, and for helping me hack on GHC. I can
highly recommend Microsoft’s internship program to anyone who is eligible, and
Cambridge is a great place to spend a few months, even in the winter. GHC is
the product of many dedicated people, and we, the Haskell Community, benefit
greatly from their efforts; thank you to all those who have worked so hard.

References

[1] Modern language design, stone age tools. www.cse.unsw.edu.au/~dons/
haskell-1990-2006/msg17236.html.

[2] Hat - the haskell tracer. www.haskell.org/hat/.

[3] The glorious glasgow haskell compilation system user’s guide. www.haskell.org/
ghc/docs/latest/html/users_guide/.

[4] Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. A lightweight interactive
debugger for Haskell. In Haskell ’07: Proceedings of the ACM SIGPLAN workshop
on Haskell, pages 13–24. ACM, New York, NY, USA (2007).

18

www.cse.unsw.edu.au/~dons/haskell-1990-2006/msg17236.html
www.cse.unsw.edu.au/~dons/haskell-1990-2006/msg17236.html
www.haskell.org/hat/
www.haskell.org/ghc/docs/latest/html/users_guide/
www.haskell.org/ghc/docs/latest/html/users_guide/


Bernie Pope: Step inside the GHCi debugger

[5] Computer dictionary project. computerdictionary.tsf.org.za/.

[6] Computer dictionary project, single html file. computerdictionary.tsf.org.za/
dictionary/terms/computerdictionary-all.html.

[7] Tag soup. www-users.cs.york.ac.uk/~ndm/tagsoup/.

[8] hackagedb. hackage.haskell.org/packages/hackage.html.

19

computerdictionary.tsf.org.za/
computerdictionary.tsf.org.za/dictionary/terms/computerdictionary-all.html
computerdictionary.tsf.org.za/dictionary/terms/computerdictionary-all.html
www-users.cs.york.ac.uk/~ndm/tagsoup/
hackage.haskell.org/packages/hackage.html

