COMP10001
Foundations of
Computing

Advanced Lecture
Functional Graphics

Traditional representation of images

As In project 2, the traditional way to represent

a computer image is using a rectangular grid of
pixels.

image = [[(l5, 103, 255), (0, 3, 19)],
[(22, 200, 1), (8, 8, 8)],
[(O, O, 0), (5, 123, 19)]]

Traditional representation of images

Each pixel is accessed by its row and column
coordinates, which are integers.

some pixel = 1mage[2][1]

This representation reflects the way that
Images are stored in files, but it is not
necessarily the most convenient way to work
with images.

Abstraction to the rescue!

A more abstract way to represent an image is
as a function from coordinates to pixel values:

pixel: (int, int, int)
Image: (float, float) = pixel

Note that we allow pixel values at arbitrary
floating point positions, rather than just integer
coordinates.

Our coordinate system

X axis

Y axis

Abstraction to the rescue!

Here is an infinite red image:
red pixel = (255, 0, 0)
def red 1image(x, Vy):
return red pixel

This function returns a red pixel for any (x,y)
coordinate.

Turning functions into bitmaps

def reify(image fun, rowl, coll, row2, col2):
image = []
for y 1n range(rowl, rowZ + 1):
image row = []
for x 1n range(coll, col2 + 1):
image row.append (image fun(x, y))
image.append (1mage row)

return 1image

Saving images
from SimpleImage 1mport write image

def save (image fun, rowl=0, coll=0, row2=299,
col2=299, filename='out.png'):

image = reify(image fun, rowl, coll,
row2, col?2)

write image (image, filename)

A 300 x 300 red image

>>> save (red 1mage)

Drawing a grid

def grid(cell size, line thickness):

def do grid(x, vy):

if (x % cell size) < line thickness or \
(y 5 cell size) < line thickness:
return black pixel
else:

return white pixel

return do grid

Drawing a grid

>>> save (gr1d (20, 3))

Scaling an image about a point

def scale(image fun, factor,

def do scale(x, y):

X t =
y_t =
new x
new vy
x € =

y t =

return image fun(x t,

return do

X — C X
y — C Y

= x t / factor
= vy t / factor
new X + C X

new y + C Yy

scale

C X, C y):

y_t)

Scaling an image about a point

>>> grid i1mage = grid (20, 3)
>>> save (scale(grid image, 2, 0, 0))

Rotating an image about a point

from math import cos, sin, radians

def rotate(f, angle, c x, cCc y):
angle = radians (angle)

def do rotate(x, y):

X L =x - c¢CcXx
y_t =y - cy
new x = x t * cos(angle) - y t * sin(angle)

new y = x t * sin(angle) + y t * cos(angle)
X T = new x + Cc X
y t = new y + Cy
return f(x t, y t)

return do_rotate

grid (20,

>>> save (rotate (grid 1mage,

Rotating an image about a point

>>> grid 1mage

9.9,9.9.90,.9,.9.9.9. 9,

Combining transformations

>>> 1 = grid (20, 3)

>>> 1 = gscale(x1, 2, 0, 0)
>>> 1 = rotate(1, 45, 0, 0)
>>> save (1)

Bitmaps to functions

def from bitmap (bitmap, tiled=True):
def do from bitmap(x, y):
num rows = len (bitmap)
if num rows > O:
num cols = len(bitmap[0])

if num cols > O:

if tiled:
X %= num cols
y %= num_rows
x = int (round(x))
y = int (round(y))

if y > 0 and x > 0 and \
y < num_rows and \
x < num cols:
return bitmap[y] [x]
return black pixel

return do from bitmap

Bitmaps to functions

>>> from SimplelImage import read image
>>> b = read image ('floyd.png')
>>> save (from bitmap (b))

Bitmaps to functions

>>> 1 = from bitmap(read image('floyd.png'))
>>> 1 = gcale(i, 0.2, 0, 0)
>>> save (rotate (i, 45, 0, 0))

Distorting an image by a wave

from math import sqgrt

def distance (x1, yl, x2, y2):
return sqgrt((yl - y2) ** 2 + (x1 - x2) ** 2)

def wave (image fun, amp, period, c X, C y):
def do wave(x, y):
d = distance(x, y, ¢ X, C_ V)
s = 2 + cos(radians(d * period)) /2.0 * amp
return scale(image fun, s, c X, c V) (X, V)

return do_wave

Distorting an image by a wave

>>> 1 = gri1d (20, 1)
>>> save (wave (i, 1, 3, 149, 149))

Distorting an image by a wave

>>> 1 = from bitmap(read image('floyd.png'))
>>> 1 = gcale(i, 0.2, 0, 0)

>>> 1 = wave (1, 3, 1, 250, 250)

>>> save (i, col2 = 500, row2 = 500)

by a wave

ing an image

Distort

Fuzzify

from random import randint

def random neighbour (image fun, window size):
half window = window size / 2
def do random neighbour(x, y):
new x = X + randint(-half window, half window)
new y = y + randint(-half window, half window)
return image fun(new x, new y)

return do random neighbour

Fuzzify

>>> 1 = from bitmap(read image ('floyd.png'))

>>> save (random neighbour (i, 10))

Challenge

Write a program to make images like this:

