
Another look at declarative
debugging for Haskell

Bernie Pope
VASET, Friday 30 Oct 2015

. . . programmers who write debugging systems wrestle with
the problem of providing a proper vantage point.

Reflection and Semantics in Lisp, Brian Cantwell Smith, 1984

What’s the problem

❖ Haskell has many admirable qualities, but it lacks
usable debugging tools (despite lots of effort).

❖ A breakpoint debugger is built into GHCi, but, as
expected it is difficult to use:

❖ Lazy evaluation

❖ Higher-order functions

Lazy evaluation

Consider the map function on lists:

map f [] = []

map f (x:xs) = f x : map f xs

The body of the recursive case contains two function applications

f x

map f xs

Their evaluation fate is determined outside the definition of map.

Lazy evaluation

In lazy languages a function call consists of two distinct
events:

1. function application (yielding a thunk)

2. reduction (thunk is evaluated to WHNF)

These two events can occur in disparate contexts,
dependent on the dynamic properties of the computation.

Lazy evaluation

It can be difficult to relate these two things:

• when (and it what context) reduction happens

• the static description of the program

Higher-order functions

Consider parsers written in the combinator style:

newtype Parser a = P (String -> (String, a))

parseExp :: Parser Exp

parseExp = parseInt <|> parseFloat <|> parseParenExp

What does parseExp do?

Higher-order functions

Conceptually we might think that parseExp parses
expressions by recognising integers, floats and
parenthesised expressions.

However, from a reduction perspective, it does very little
except build a function from other functions. The action of
parsing happens elsewhere.

What’s the problem?

❖ Haskell encourages - and benefits from - declarative
reasoning.

❖ However, traditional breakpoint debuggers impose an
operational perspective on computation.

❖ Therefore it is hard to apply traditional debugging
techniques to Haskell because programmers do not (and
really cannot) think operationally about Haskell
programs.

What I want is Buddha or Hat. They let you
evaluate a program, and then drill into
subcomputations until you find the base case
that is causing your wrong answer.

Because Haskell programs are typically not
about imperative, 'steps.' They are about
recursive decomposition into subproblems. You
need a debugger that lets you inspect that
structure.

Posted on reddit /r/haskell, 2014

Declarative debugging

❖ Computations are represented as trees (or perhaps
directed graphs) - Evaluation Dependency Tree (EDT).

❖ Nodes contain computation steps (such as reductions).

❖ Edges represent evaluation dependency.

Declarative debugging
❖ An error diagnosis is applied to the tree in search of

buggy nodes.

❖ A node is erroneous if it contains a computation step
which does not agree with the intended meaning of the
program.

❖ A node is buggy if:

❖ it contains an erroneous computation step

❖ it does not depend on any erroneous children nodes

Declarative debugging

❖ An oracle judges the correctness of nodes. The oracle
knows the intended meaning of the program.

❖ A node can be:

❖ correct

❖ incorrect

❖ inadmissible

Intended meaning

❖ The intended meaning of a program explains what a
program is supposed to do.

❖ It is defined over the (let-bound) variables and data
constructors from the program source.

Evaluation dependency tree

Consider this small buggy program:

double x = x + 1

start = double (3 * 2)

The evaluation of start produces 7, when we expect it to
produce 12.

Evaluation dependency tree
start ⇒ 7

3 * 2 ⇒ 6 double 6 ⇒ 7

6 + 1 ⇒ 7

Evaluation dependency tree
start ⇒ 7

3 * 2 ⇒ 6 double 6 ⇒ 7

6 + 1 ⇒ 7
erroneous

correct

Evaluation dependency tree
start ⇒ 7

3 * 2 ⇒ 6 double 6 ⇒ 7

6 + 1 ⇒ 7
erroneous

correct

buggy

Evaluation dependency tree

❖ Nodes in the EDT in the previous example contain big-
step reductions, making it a big-step EDT.

❖ Big-step EDTs are traditional for declarative debugging.

❖ However, the declarative debugging algorithm does not
require big-step trees.

Small-step EDT

start ⇒ double (3 * 2)

double (3 * 2) ⇒ (3 * 2) + 1

3 * 2 ⇒ 6 6 + 1 ⇒ 7

Mixed-step EDT
start ⇒ 7

3 * 2 ⇒ 6

double (3 * 2) ⇒ 6 + 1 6 + 1 ⇒ 7

Which EDT is best?

❖ Big-step EDTs are often the easiest to understand
because arguments and results are shown in their most
evaluated form.

❖ But this may not always be true.

Bigger-step EDTs

❖ For higher-order functions it sometimes make sense to
consider all the reductions of a function together:

❖ Compare:

map (plus 1) [1, 2] ⇒ [2, 3]

map {1 ⇒ 2, 2 ⇒ 3} [1, 2] ⇒ [2, 3]

Bigger-step EDTs

❖ For higher-order functions it sometimes make sense to
consider all the reductions of a function together:

❖ Compare:

map (plus 1) [1, 2] ⇒ [2, 3]

map {1 ⇒ 2, 2 ⇒ 3} [1, 2] ⇒ [2, 3]

These require different
shaped EDTs

❖ For higher-order functions it sometimes make sense to
consider all the reductions of a function together:

❖ Compare:

map (plus 1) [1, 2] ⇒ [2, 3]

map {1 ⇒ 2, 2 ⇒ 3} [1, 2] ⇒ [2, 3]

Bigger-step EDTs

This is not a term

Some Observations
❖ The formalisation of declarative debugging for Haskell could do

some refinement - currently tied to big-step EDTs.

❖ Evaluation dependency is not well defined in terms of Haskell’s
semantics (also Haskell does not have a official, precise semantics).

❖ We ought to be able to develop a theory in which all step sizes of
EDTs are correct and inter-convertible.

❖ The theory needs to be grounded in a semantics for Haskell.

❖ The small-step EDT is essentially a reduction trace of the
computation.

buddha was radically better than the GHCi
debugger

Posted on haskell-irc channel in 2010

What’s the problem?

❖ If declarative debugging is so great why doesn’t a
usable debugger exist already?

What’s the problem?

❖ Tools such as Hat and Buddha are post mortem.

❖ Debugging only happens after the computation has
finished.

❖ This requires the whole computation history to be
recorded and saved.

❖ For non-toy examples, this can be HUGE.

What’s the problem?

❖ You can write it to secondary storage (like HAT), but
that doesn’t buy you much in the long run, and slows
things down considerably.

❖ The Mercury declarative debugger recomputed subtrees
during debugging, but that is difficult/ineffective with
lazy evaluation, and requires tabling of I/O.

Possible solution

❖ It is desirable to interleave computation and debugging.

❖ We can compute a small-step trace of the computation
in a bounded-size memory buffer.

❖ When the buffer is full, debugging is initiated.

❖ A partial EDT can be reconstructed from the small-step
trace.

Possible solution

❖ The current debugging session may reach a fringe node
of the partial EDT.

❖ The computation can be resumed to fill-in more of the
tree.

❖ The partial EDT must be continually pruned to keep
space usage under control.

Conjecture

❖ A more thorough formalisation of the EDT will:

❖ explain the correctness of declarative debugging for
Haskell

❖ provide more flexible EDT structure (we can re-
shape the tree during debugging)

❖ provide the foundation for interleaving program
execution and debugging

A possible way forward

❖ Start with the STG machine

❖ is used by GHC

❖ has an operational semantics

❖ Extend the semantics to provide a program trace

❖ Mini-STG might be a good starting point:

https://wiki.haskell.org/Ministg

https://wiki.haskell.org/Ministg

