
FPU Continuations

CSSE , The University of MelbourneBernie Pope, 2008

Continuations

An overview

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Outline

• The Continuation Passing Style

• Use in denotational semantics

• The escape operator (call/cc)

• History

• A sneak preview of the continuation monad

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

The “direct” style

fac n = if n == 0 then 1 else n * fac (n - 1)

Using eager evaluation:

1) fac 2
2) if 2 == 0 then 1 else 2 * fac (2 - 1)
3) if False then 1 else 2 * fac (2 - 1)
4) 2 * fac (2 - 1)
5) 2 * fac 1
6) 2 * (if 1 == 0 then 1 else 1 * fac (1 - 1))
7) 2 * (if False then 1 else 1 * fac (1 - 1))
8) 2 * (1 * fac (1 - 1))
9) 2 * (1 * fac 0)
10) 2 * (1 * (if 0 == 0 then 1 else 0 * fac (0 - 1)))
11) 2 * (1 * (if True then 1 else 0 * fac (0 - 1)))
12) 2 * (1 * 1)
13) 2 * 1
14) 2

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

The continuation passing style

fac n k = if n == 0 then k 1 else fac (n - 1) (\r -> k (n * r))

1) fac 2 id
2) if 2 == 0 then id 1 else fac (2 - 1) (\r1 -> id (2 * r1))
3) if False then id 1 else fac (2 - 1) (\r1 -> id (2 * r1))
4) fac (2 - 1) (\r1 -> id (2 * r1))
5) fac 1 (\r1 -> id (2 * r1))
6) if 1 == 0 then ...k... 1 else fac (1 - 1) (\r2 -> (\r1 -> id (2 * r1)) (1 * r2))
7) if False then ...k... 1 else fac (1 - 1) (\r2 -> (\r1 -> id (2 * r1)) (1 * r2))
8) fac (1 - 1) (\r2 -> (\r1 -> id (2 * r1)) (1 * r2))
9) fac 0 (\r2 -> (\r1 -> id (2 * r1)) (1 * r2))
10) if 0 == 0 then (\r2 -> (\r1 -> id (2 * r1)) (1 * r2)) 1 else ...
11) if True then (\r2 -> (\r1 -> id (2 * r1)) (1 * r2)) 1 else ...
12) (\r2 -> (\r1 -> id (2 * r1)) (1 * r2)) 1
13) (\r1 -> id (2 * r1)) (1 * 1)
14) (\r1 -> id (2 * r1)) 1
15) id (2 * 1)
16) id 2

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

The continuation passing style, notes

• We could (maybe should) transform operators (*, ==, -) into CPS too.

• Need to be careful with if-then-else, because it needs to be “lazy”.

• The continuation is a reified context.

• The benefit is that can “do things” with the context, now that it is a value:

• ignore it and replace with something else,

• modify it,

• save a copy of it.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

The continuation passing style, more notes

• CPS flattens nested expressions, making evaluation order explicit.

• This flattening has strong connections with the kind of transformation you
might do in a compiler for an imperative language, to manage control flow!
See: Richard Kelsey “A Correspondence between Continuation Passing Style
and Single Static Assignment Form” (1995).

• Functions in CPS style never “return” a value, they just call (jump to) their
continuation.

• All calls become tail calls.

• You can do away with the call stack, but beware: the continuation may grow,
just like the stack. (how to replace one space leak with another).

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Plotkin’s CPS transform for call-by-value LC

[[x]] = \k. k x

[[\x.M]] = \k. k (\x. [[M]])

[[M N]] = \k. [[M]] (\m. [[N]] (\n. (m n) k))

Plotkin, G. D. (1975). Call-by-name, call-by-value and the lambda calulus. Theoretical Computer Science, 1:125-159.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Plotkin’s CPS transform for call-by-name LC

[[x]] = x

[[\x.M]] = \k. k (\x. [[M]])

[[M N]] = \k. [[M]] (\m. (m [[N]]) k)

Plotkin, G. D. (1975). Call-by-name, call-by-value and the lambda calulus. Theoretical Computer Science, 1:125-159.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Problems with the simple CPS transforms

• Introduce new “administrative” (or plumbing) redexes, which need to be
eliminated in a second pass.

• See: Danvy and Filinski “Representing control: a study of the CPS
transform” (1992).

• Call by need is more complicated (have to deal with sharing). See: Okasaki,
Lee, Tarditi “Call-by-need and Continuation-passing Style” (1993).

• Introduces lots of closures into the transformed program, which can be costly
for compilation. See: Steele Jr “Rabbit: a compiler for Scheme” (1978).

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Definitional interpreters

• You can apply the CPS transformation to programs as we have seen.

• Or you can transform your interpreter to use continuation passing.

• See Reynolds, “Definitional Interpreters for Higher-Order Programming
Languages” (1972)

• In either case, one useful outcome is that the evaluation order of the defined
language is independent of the evaluation order of the defining language.

• Eg, suppose you implement an interpreter for Scheme in Haskell. If you use
CPS, then the laziness of Haskell does not imply laziness in your Scheme (this
requires you to choose the CPS for call-by-value of course). This is a problem
in “meta circular” interpreters.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Direct denotational semantics

• The meaning of programs is denoted by “values” from a “semantic domain”.

• Contrast with the operational semantics, where the meaning of programs is
given by “actions” (transitions in a state machine).

• The “direct” denotational semantics uses a semantic function:

eval :: Term -> Environment -> Value

• The denotational semantics is (supposed to be) compositional: the meaning of
a compound term is constructed from the meanings of its sub-terms.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Continuation semantics

• The direct style makes it awkward to handle “non-compositional” things like
errors, and exotic control flow operators (jumps).

• The same problem happens in the “direct style” of programming in a pure
functional language like Haskell. Consider the propagation of “Nothing” (aka
failure encoded as a value) upwards through some deeply nested computation.

• Did anyone say “monads”? Note: monadic style is not “direct”.

• An alternative is to use the “continuation semantics”:

cont = Value -> Value

eval :: Term -> Environment -> Cont -> Value

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Continuation semantics and exotic control operators

• The classic example is call/cc from Scheme.

• The expression callcc e evaluates the expression e to obtain a function, and
then applies that function to the current continuation (as well as giving the
current continuation to the function as its continuation). (Reynolds “Theories of
programming languages” (page 255).

• The expression throw e1 e2 evaluates e1 to obtain a continuation and then
evaluates e2, giving it the continuation that is the value of e1, rather than the
continuation that is given to the throw expression itself. (ibid page 256)

eval(callcc e, env, k) = eval(e, env, \f. f k k)

eval(throw e1 e2, env, k) = eval(e1, env, \c. eval(e2, env, c))

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Iʼm cheating a bit, by dropping the
environment, and skipping some steps.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Apply the rule for callcc to get to the
next line.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Apply the rule for function abstraction
(not shown here) to get to the next line.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12 Apply the rule for binary operator

application (not shown here) to get to
the next line.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Apply the rule for constants (not shown
here) to get to the next line.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12 Apply function application to get to the

next line. Yes, now I am REALLY
cheating.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12 Apply the rule for throw to get to the

next line (notice that it tosses away its
continuation).

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Apply the rule for variables (not shown)
to get to the next line

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

An example of the semantics of callcc

What is the meaning of the term:

callcc (\c. 2 + throw c (3 * 4))

 eval(callcc (\c. 2 + throw c (3 * 4)), k)
= eval(\c. 2 + throw c (3 * 4), \f. f k k)
= eval(2 + throw k (3 * 4), k)
= eval(2, \i. eval(throw k (3 * 4), \j. k(i + j)))
= (\i. eval(throw k (3 * 4), \j. k(i + j))) 2
= eval(throw k (3 * 4), \j. k(2 + j))
= eval(k, \c. eval(3 * 4, c))
= eval(3 * 4, k)
...
= k 12

Apply the rule for binary operators and
then constants to get to the bottom.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Delimited continuations

• See: Danvy, Filinski “Representing control: a study of the CPS
transformation” (1992).

• Introduce two new operators: shift and reset.

1 + reset(10 + shift c in c (c 100))

=> 1 + (10 + (10 + 100))

=> 121

• Allows the definition of many new control operators not available with call/cc
(eg nondet choice).

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

History of the discoveries of continuations

• See: Reynolds “The Discoveries of Continuations” (1993).

• Algol 60 a big motivation for formal definition of programming languages.

• Adriaan van Wijngaarden appears to be the first to describe the CPS transform
in 1964, as a compilation technique for imperative languages.

• Lots of influential people heard van Wijngaarden’s talk, but it did not take root.

• However, it did spur Dijkstra to pen “Go to statement considered harmful”.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

History of the discoveries of continuations, cont’d

• Wadsworth uses continuations in Strachey’s lattice-theoretic semantics to
allow imperative features a denotational treatment. (1970)

• Did not publish until 1973

• “Strachey felt that it was often good to live with, and try out, a promising idea
for a while before publishing --- not the dominant practice nowadays.... get it
reasonably polished before bothering the world with results that may be of
transient value.”

• Abdali (1973) uses continuations to translate Algol 60 into the untyped lambda
calculus.

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

History of the discoveries of continuations, cont’d

• Reynolds: “the early history of continuations is a sharp reminder that original
ideas are rarely born in full generality, and that their communication is not
always a simple or straightforward task”

FPU Continuations

Bernie Pope, 2008 CSSE , The University of Melbourne

Sneak preview of the continuation monad

• Let’s look at some code in terpie.

