
FPU Applicative Functors

Bernie Pope, 2009

Applicative Functors

Bernie Pope

Bernie Pope, 2009

FPU Applicative Functors

Outline

• Functors

• A problem

• A solution

• Compared to Functors and Monads

• Expressiveness

• Application in parser combinators

Bernie Pope, 2009

FPU Applicative Functors

Functors

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor [] where
 fmap _ [] = []
 fmap g (x:xs) = g x : fmap g xs

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just a) = Just (g a)

Bernie Pope, 2009

FPU Applicative Functors

Functor Laws

fmap id = id

fmap (g . h) = fmap g . fmap h

Bernie Pope, 2009

FPU Applicative Functors

A problem

• What if you want to fmap a function or arity higher than one?

• fmap (+) [1,2,3] :: Num a => [a -> a]

• For some Functor f, if the mapped function has type
(t1 -> t2 ... -> tn) then we end up with a result of type
f (t2 -> ... -> tn)

• The problem is, what can we do with that result, now that the function is in the
context of f?

Bernie Pope, 2009

FPU Applicative Functors

A solution

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative [] where
 pure x = [x]
 gs <*> xs = [g x | g <- gs, x <- xs]

Bernie Pope, 2009

FPU Applicative Functors

A solution

• The <*> operator gives us a way to use a function embedded in a context.

• The pure function gives us a way to put a value into a context.

• These operators can be built from existing monads.

Bernie Pope, 2009

FPU Applicative Functors

Using monads where you find them

ap :: (Monad m) => m (a -> b) -> m a -> m b
ap = liftM2 id

liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }

instance Applicative Maybe where
 pure = return
 (<*>) = ap

instance Applicative [] where
 pure = return
 (<*>) = ap

Bernie Pope, 2009

FPU Applicative Functors

Example

GHCi> (+) `fmap` [1,2,3] <*> [4,5]
[5,6,6,7,7,8]

GHCi> [x + y | x <- [1,2,3], y <- [4,5]]
[5,6,6,7,7,8]

GHCi> do { x <- [1,2,3]; y <- [4,5]; return (x + y) }
[5,6,6,7,7,8]

Bernie Pope, 2009

FPU Applicative Functors

Compared to Monads and Functors

($) :: (a -> b) -> a -> b
fmap :: Functor t => (a -> b) -> t a -> t b
(<*>) :: Applicative t => t (a -> b) -> t a -> t b
flip (>>=) :: Monad t => (a -> t b) -> t a -> t b

Bernie Pope, 2009

FPU Applicative Functors

Expressiveness

miffy :: Monad m => m Bool -> m a -> m a -> m a
miffy mb mt mf = do
 b <- mb
 if b then mt else mf

iffy :: Applicative f => f Bool -> f a -> f a -> f a
iffy fb ft ff = cond `fmap` fb <*> ft <*> ff
 where
 cond b t f = if b then t else f

Bernie Pope, 2009

FPU Applicative Functors

Applications in parser combinators

child = do
 e <- element
 cd <- optionMaybe charData
 return (e, cd)

child = (,) <$> element <*> optionMaybe charData

Bernie Pope, 2009

FPU Applicative Functors

Applications in parser combinators

(*>) :: Applicative a => a b -> a c -> a c

(<*) :: Applicative a => a b -> a c -> a b

elementPrefix =
 (,) <$> (string "<" *> name) <*> (spaces *> attributes)

