
Implementing Python in
Haskell, twice.

Bernie Pope
Melbourne Haskell Users Group

24th April 2014

Overview

● How it all started
● language-python
● berp
● blip
● What’s the point and where will it end?

How it all started.

In 2009 I was teaching Advanced Functional
Programming to honours and masters students.

I needed a project which covered parser
combinators and continuations, amongst other
things.

Decided to get the students to implement a
small imperative programming language.

How it all started.

At the same time I was teaching Python to first
year students.

My brain merged the two things together.

The small imperative language project inherited
a lot of Pythonic features.

How it all started

I wrote a sample solution to give to students.

It was fun.

I started wondering: how hard would it be to
extend my sample solution to cover all of
Python?

First things first

I had a toy parser written in Parsec, but it was
slow and incomplete.

Decided to rewrite it (properly) using Alex and
Happy.

language-python

Python’s official grammar is LL(1); easy to
parse in recursive descent.

Happy supports LALR(1) (and extensions).

Initially I tried to generate the parser from the
grammar, but I found it easier to write by hand.

Happy parser generator

Grammar rule:

funcdef: 'def' NAME parameters ['->' test] ':' suite

Corresponding Happy parser rule:

funcdef :: { StatementSpan }

funcdef

 : 'def' NAME parameters opt(right('->',test)) ':'

 suite

 { makeFun $1 $2 $3 $4 $6 }

Happy’s parameterized productions
left(p,q): p q { $1 }

right(p,q): p q { $2 }

opt(p)

 : { Nothing }

 | p { Just $1 }

many0(p)

 : many1(p) { $1 }

 | { [] }

Tricky syntactic issues

Indentation/dedentation is handled by the lexer.

Comments are maintained in the output, but
currently separate from the AST. Where to put
them? Important for refactoring tools.

Source locations are kept as annotations in the
AST; but troublesome to use the AST for other
purposes.

Some loose ends

Unicode support is patchy.

Uses Prelude.String; should probably use Data.
Text.

Separate package for testing, language-python-
test, but needs lots of work.

Testing parsers (properly) is frustrating.

Now what?

I had a parser, but now what to do?

I could write an interpreter (AST walker), but
that would be really slow.

Someone once told me: if you can write an
interpreter then it is nearly as easy to write a
translator.

The berp thought experiment

What would it take to translate Python into
Haskell?

Fortunately public transport gave me a lot of
thinking time.

In the great tradition of writing compilers I wrote
the first translations by hand. It seemed
feasible.

Okay, what is Python’s semantics?

Control flow can be tricky:

while True:

 try:

 1/0

 except:

 break

 finally:

 continue

What is this supposed to do?

Okay, what is Python’s semantics?

Let’s ask Python:

python foo.py

 File "foo.py", line 7

 continue

SyntaxError: 'continue' not supported inside
'finally' clause

Python’s semantics is “whatever CPython
does”, but see: An executable operational semantics for
Python, http://gideon.smdng.nl/wp-content/uploads/thesis.pdf

http://gideon.smdng.nl/wp-content/uploads/thesis.pdf

Don’t worry about semantics, get
hacking

In 2010 I had to fly to the USA.

I took my laptop on the plane.

By the end of the trip I had a workable Python-
to-Haskell translator.

Key types
type Eval a = StateT EvalState (ContT Object IO) a

type ObjectRef = IORef Object

data Object

 = Object

 { object_identity :: !Identity

 , object_type :: !Object

 , object_dict :: !Object

 }

 | etcetera

data EvalState =

 EvalState

 { state_control_stack :: !ControlStack

 , etcetera

 }

Example program
def fac(n, acc):

 if n == 0:

 return acc

 else:

 return fac(n-1, n*acc)

print(fac(1000, 1))

Example translated program
module Main where

import Berp.Base

import qualified Prelude

main = runStmt init

init

 = do _s_fac <- var "fac"

 def _s_fac 2 none

 (\ [_s_n, _s_acc] ->

 ifThenElse

 (do _t_6 <- read _s_n

 _t_6 == 0)

 (do _t_7 <- read _s_acc

 ret _t_7)

 (do _t_0 <- read _s_fac

 _t_1 <- read _s_n

 _t_2 <- _t_1 - 1

 _t_3 <- read _s_n

 _t_4 <- read _s_acc

 _t_5 <- _t_3 * _t_4

 tailCall _t_0 [_t_2, _t_5]))

 _t_8 <- read _s_print

 _t_9 <- read _s_fac

 _t_10 <- _t_9 @@ [1000, 1]

 _t_8 @@ [_t_10]

Example translated program
 def _s_fac 2 none

 (\ [_s_n, _s_acc] ->

 ifThenElse

 (do _t_6 <- read _s_n

 _t_6 == 0)

 (do _t_7 <- read _s_acc

 ret _t_7)

 (do _t_0 <- read _s_fac

 _t_1 <- read _s_n

 _t_2 <- _t_1 - 1

 _t_3 <- read _s_n

 _t_4 <- read _s_acc

 _t_5 <- _t_3 * _t_4

 tailCall _t_0 [_t_2, _t_5]))

Party trick, how could I resist
callCC?
>>> def f():

... count = 0

... k = callCC(lambda x: x)

... print(count)

... if count < 3:

... count = count + 1

... k(k)

...

>>> f()

0

1

2

3

Is Haskell a good target for
compiling Python?

Pros:
● GHC’s runtime features for free; GC,

threads; I/O.

Cons:
● Runtime representation of Python state is

heavy weight (i.e. slow).
● Python uses lots of mutation; Haskell is not

good at this.

The honeymoon is over

I implemented a fair bit of the standard types,
made a REPL, then shelved the project.

I’ve pursued that thought experiment far
enough.

Back to the drawing board.

Take two; a bytecode compiler

During the implementation of berp I found it
necessary to poke around in the CPython
source.

This started a new train of thought: maybe I
should write a bytecode compiler instead?

I’d never done that before, so I thought it might
be educational.

Another flight to the USA

In 2012 I was flying back to the USA.

An ideal chance to start my new project.

With the help of GDB I managed to figure out
Python’s bytecode representation.

I wrote a bytecode parser/pretty printer on that
trip.

Bytecode for the factorial example
 0 LOAD_FAST 0

 3 LOAD_CONST 1

 6 COMPARE_OP 2

 9 POP_JUMP_IF_FALSE 19

 12 LOAD_FAST 1

 15 RETURN_VALUE

 16 JUMP_FORWARD 21

 19 LOAD_GLOBAL 0

 22 LOAD_FAST 0

 25 LOAD_CONST 2

 28 BINARY_SUBTRACT

 29 LOAD_FAST 0

 32 LOAD_FAST 1

 35 BINARY_MULTIPLY

 36 CALL_FUNCTION 2

 39 RETURN_VALUE

 40 LOAD_CONST 0

 43 RETURN_VALUE

The compiler is straightfoward
newtype Compile a

 = Compile (StateT CompileState IO a)

 deriving (Monad, Functor, MonadIO, Applicative)

class Compilable a where

 type CompileResult a :: *

 compile :: a -> Compile (CompileResult a)

The compiler is straightfoward
-- compile the body of a function

instance Compilable Body where

 type CompileResult Body = PyObject

 compile (Body stmts) = do

 mapM_ compile stmts

 returnNone

 assemble

 makeObject

The compiler is straightfoward
 compileExpr (AST.CondExpr {..}) = do

 compile ce_condition

 falseLabel <- newLabel

 emitCodeArg POP_JUMP_IF_FALSE falseLabel

 compile ce_true_branch

 restLabel <- newLabel

 emitCodeArg JUMP_FORWARD restLabel

 labelNextInstruction falseLabel

 compile ce_false_branch

 labelNextInstruction restLabel

Testing the compiler

Test suite contains about 150 feature tests.

I use shelltestrunner to run tests and report
results.

I also run the compiler over the CPython test
suite.

What about a bytecode interpreter?

Over Christmas I had some spare time while
visiting family overseas.

I thought about writing an operational
semantics (on paper) for Python bytecode.

Then I came to my senses and started writing it
in Haskell

The interpreter is straightforward
data EvalState =

 EvalState

 { evalState_objectID :: !ObjectID

 , evalState_heap :: !Heap

 , evalState_globals :: !Globals

 , evalState_frameStack :: ![HeapObject]

 }

newtype Eval a

 = Eval (StateT EvalState IO a)

 deriving (Monad, Functor, MonadIO, Applicative)

The interpreter is straightforward
 data HeapObject
 = CodeObject

 { codeObject_code :: !ObjectID

 , codeObject_consts :: !ObjectID

 , codeObject_names :: !ObjectID

 , ... etcetera ...

 }

 | DictObject

 { dictHashTable :: !HashTable }

 | ... etcetera ...

The interpreter is straightforward
evalOneOpCode :: HeapObject -> Opcode -> Word16 -> Eval ()

evalOneOpCode (CodeObject {..}) opcode arg =

 case opcode of

 CALL_FUNCTION -> do

 functionArgs <- Monad.replicateM (fromIntegral arg) popValueStack

 functionObjectID <- popValueStack

 functionObject <- lookupHeap functionObjectID

 callFunction functionObject $ List.reverse functionArgs

 JUMP_ABSOLUTE -> setProgramCounter $ fromIntegral arg

 -- etcetera

How complete is the interpreter?

I’ve implemented about half of the bytecode
instructions.

Python’s OOP implementation is quite tricky to
get right.

I doubt many Python programmers know the
full semantics of attribute resolution.

What now?

Can there be some practical benefit to all this
effort?

Code repositories

https://github.com/bjpop/language-python

https://github.com/bjpop/berp

https://github.com/bjpop/blip

https://github.com/bjpop/language-python
https://github.com/bjpop/language-python
https://github.com/bjpop/berp
https://github.com/bjpop/berp
https://github.com/bjpop/blip
https://github.com/bjpop/blip

