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Abstract

This thesis is about the design and implementation of a debugging tool which helps

Haskell programmers understand why their programs do not work as intended. The

traditional debugging technique of examining the program execution step-by-step,

popular with imperative languages, is less suitable for Haskell because its unorthodox

evaluation strategy is difficult to relate to the structure of the original program

source code. We build a debugger which focuses on the high-level logical meaning

of a program rather than its evaluation order. This style of debugging is called

declarative debugging, and it originated in logic programming languages. At the

heart of the debugger is a tree which records information about the evaluation of

the program in a manner which is easy to relate to the structure of the program.

Links between nodes in the tree reflect logical relationships between entities in the

source code. An error diagnosis algorithm is applied to the tree in a top-down

fashion, searching for causes of bugs. The search is guided by an oracle, who knows

how each part of the program should behave. The oracle is normally a human —

typically the person who wrote the program — however, much of its behaviour can

be encoded in software.

An interesting aspect of this work is that the debugger is implemented by means

of a program transformation. That is, the program which is to be debugged is trans-

formed into a new one, which when evaluated, behaves like the original program

but also produces the evaluation tree as a side-effect. The transformed program is

augmented with code to perform the error diagnosis on the tree. Running the trans-

formed program constitutes the evaluation of the original program plus a debugging

iii



session. The use of program transformation allows the debugger to take advantage

of existing compiler technology — a whole new compiler and runtime environment

does not need to be written — which saves much work and enhances portability.

The technology described in this thesis is well-tested by an implementation in

software. The result is a useful tool, called buddha, which is publicly available and

supports all of the Haskell 98 standard.
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Preface

This thesis is based in part on the original work presented in the following four peer

reviewed papers:

• B. Pope. Declarative debugging with Buddha. In V. Vene and T. Uustalu,

editors, Advanced Functional Programming, 5th International School, volume

3622 of Lecture Notes in Computer Science, pages 273–308. Springer-Verlag,

2005. (Invited paper).

– The debugging example in Chapter 3 is taken from this paper.

– The program transformation algorithm in Chapter 5 is an improved ver-

sion of the one discussed in this paper.

– The method of observing values for printing in Chapter 6 is based on the

technique described in this paper, and also the following paper.

• B. Pope and L. Naish. Practical aspects of declarative debugging in Haskell-

98. In Proceedings of the Fifth ACM SIGPLAN Conference on Principles and

Practice of Declarative Programming, pages 230–240. ACM Press, 2003.

– The re-evaluation scheme and method of debugging of I/O computations

in Chapter 7 are based on this paper, though greatly improved in the

current presentation.
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• B. Pope and L. Naish. A program transformation for debugging Haskell-98.

Australian Computer Science Communications, 25(1):227–236, 2003.

– This paper describes an earlier version of the debugging program trans-

formation. The treatment of higher-order functions in this paper is the

basis of the scheme discussed in Chapter 5 and Chapter 6.

• B. Pope and L. Naish. Specialisation of higher-order functions for debugging.

In M. Hanus, editor, Proceedings of the International Workshop on Functional

and (Constraint) Logic Programming (WFLP 2001), volume 64 of Electronic

Notes in Theoretical Computer Science. Elsevier Science Publishers, 2002.

– This paper describes an earlier approach to transforming higher-order

functions. It is made obsolete by the new transformation described in

Chapter 5. We discuss this alternative approach in Chapter 8.

Lee Naish contributed to the development of this thesis. He was the secondary

author on three of the above-mentioned papers. In addition, the following parts are

based extensively on his work:

• The definition of buggy nodes in Chapter 3.

• The concepts of intended interpretations and inadmissibility in Chapter 4.

• The use of quantifiers to handle partial values in derivations in Chapter 4.

The following items have not been previously published:

• The more flexible definition of evaluation dependency in Chapter 3.

• The performance measurements in Chapters 5 and 7.

• The improved scheme for piecemeal EDT construction in Chapter 7.

viii



Acknowledgments

Lee Naish, my supervisor, is a pioneer in the field of declarative debugging and I

am honoured to work with him for so many years on this topic. Our relationship

began in 1997, when I was starting my honours year and keen to work in functional

programming. To my great fortune Lee had a project in debugging and was kind

enough to let me join in. It was quite clear that a single honours year was not

long enough, so I jumped at the chance to continue with a PhD. In my quest for

the elusive debugger I have stumbled, taken many wrong paths, and backtracked

frequently over well-trodden ground. Such meandering would test even the most

patient of souls, yet Lee was happy to let me explore, and always ready to offer

sound advice and directions when I needed them. Thank you Lee for supporting me

on this long journey, I have enjoyed your friendship and guidance every step of the

way.

I am also greatly indebted to Harald Søndergaard, my co-supervisor, for leading

me to functional programming so many years ago and showing me how stimulating

Computer Science can be. I will never forget the day that I became a functional

programmer. It was in Harald’s class, he was explaining with his usual enthusiasm

the elegance of a line of Haskell code — though he made it seem like it was a line

of poetry. From then on I was converted.

I must also thank Lee and Harald for proof reading earlier drafts of this thesis.

Along the way I have had many functional programming comrades and it would

be remiss of me not to give them praise. Foremost is Kevin Glynn, a truly great

friend, keen functional programmer, and Wolves supporter. I have many fond mem-

ix



ories of my time spent with Kevin, in the office, on the soccer pitch (or in the

stadium) and also in the pub. I hope that one day we will share the same continent

again. I would like to thank all the members of the functional programming group

for their support. A PhD can be an isolating experience and it was encouraging to

have so many people to lend their ears. Thanks also to the many Mercurians who

looked on with interest and provided much inspiration and competition to us lazy

Haskellites.

For almost all of this degree I lived with Steve Versteeg, a student himself,

who showed me how to live life to the fullest extent. We enjoyed many adventures

together and helped one another forget the harsh realities of deadlines and progress

reports.

Though there are many people to thank, none are more deserving of my gratitude

than my beloved family.

I am fortunate to have such kind and generous parents, Jan and Brian Pope.

They are my foundation in life and I am eternally indebted to them for their endless

support. I want to thank them for working so hard to allow me to pursue my

interests and encouraging me in whatever I choose to do (even when I go about it

so slowly). Thanks also to my sister Gabrielle Pope who has stood by me and urged

me along in a way that only a big sister can.

Outside of the offices and halls of the Computer Science department my life

changed in a most remarkable way. I met, and later married, my darling wife

Hui Nie Fu. She has been a constant source of love and happiness, and without

her help I would not have completed this thesis. I look forward to our life to-

gether, especially to exploring the world and visiting her family (my new family) in

Selatpanjang.

Finally, I would like to thank the Australian Federal Government for supporting

this thesis with an Australian Postgraduate Award.

x



Contents

1 Introduction 1

1.1 No silver bullet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Debugging Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Declarative debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Research problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Haskell 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Key features of Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Higher-order functions . . . . . . . . . . . . . . . . . . . . . . 18

xi



2.2.4 Static types with polymorphism and overloading . . . . . . . 19

2.2.5 Non-strict evaluation . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.6 Implicit memory management . . . . . . . . . . . . . . . . . . 22

2.3 Dynamic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Term rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Graph reduction . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Monads and I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Pragmatic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Declarative Debugging 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 The EDT and wrong answer diagnosis . . . . . . . . . . . . . . . . . 43

3.3.1 Properties of the EDT . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Identification of buggy equations . . . . . . . . . . . . . . . . 45

3.3.3 Example EDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4 Big-step EDTs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 An interface to the EDT . . . . . . . . . . . . . . . . . . . . . 49

3.3.6 Wrong answer diagnosis . . . . . . . . . . . . . . . . . . . . . 51

3.3.7 Constructing the EDT . . . . . . . . . . . . . . . . . . . . . . 53

3.4 An example debugging session . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Higher-order functions . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Pattern bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Judgement 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 77

xii



4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Partial values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Inadmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Higher-order functions . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 EDT Construction 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 88

5.2 The general scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Implementing the EDT . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Transforming function bindings . . . . . . . . . . . . . . . . . . . . . 94

5.5 Transforming pattern bindings . . . . . . . . . . . . . . . . . . . . . 96

5.6 Transforming higher-order code . . . . . . . . . . . . . . . . . . . . . 101

5.6.1 Lambda abstractions . . . . . . . . . . . . . . . . . . . . . . . 101

5.6.2 Partial applications . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 The transformation rules . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7.1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7.2 Notation used in the transformation rules . . . . . . . . . . . 111

5.7.3 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.5 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8.2 EDT correctness . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



6 Observing Values 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 130

6.2 The requirements of observation . . . . . . . . . . . . . . . . . . . . 130

6.3 A Haskell implementation . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 An observation primitive . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.1 Cyclic values . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Observing functional values . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.1 Intensional printing of functions . . . . . . . . . . . . . . . . 139

6.5.2 Extensional printing of functions . . . . . . . . . . . . . . . . 142

6.5.3 Combining both styles . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.7 Displaying large values . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Practical Considerations 153

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 154

7.2 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.1 Printing IO values . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.2 EDT dependencies for IO code . . . . . . . . . . . . . . . . . 159

7.2.3 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Trusted functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Piecemeal EDT construction . . . . . . . . . . . . . . . . . . . . . . 169

7.4.1 The basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.5 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xiv



8 Related Work 193

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.1.1 Outline of this chapter . . . . . . . . . . . . . . . . . . . . . . 194

8.2 Diagnostic writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.1 The trace primitive . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.2 The Haskell Object Observation Debugger . . . . . . . . . . . 196

8.2.3 Graphical Hood . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.2.4 Limitations of diagnostic writes . . . . . . . . . . . . . . . . . 204

8.3 Declarative debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.1 Freya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.3.2 Program transformation . . . . . . . . . . . . . . . . . . . . . 212

8.4 Hat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.5 Step-based debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.6 Monitoring semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.7 Randomised testing with QuickCheck . . . . . . . . . . . . . . . . . 229

8.8 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.8.1 Classification of the different tools . . . . . . . . . . . . . . . 231

8.8.2 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9 Conclusion 235

9.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

9.1.1 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 237

9.1.2 The evolution of buddha . . . . . . . . . . . . . . . . . . . . . 239

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9.2.1 Printing free lambda-bound variables . . . . . . . . . . . . . . 244

9.2.2 Support for language extensions . . . . . . . . . . . . . . . . 246

9.2.3 Integration with an interpreter-style interface . . . . . . . . . 248

9.2.4 Customisation . . . . . . . . . . . . . . . . . . . . . . . . . . 249

9.2.5 Improved EDT traversal . . . . . . . . . . . . . . . . . . . . . 250

9.2.6 A more flexible EDT . . . . . . . . . . . . . . . . . . . . . . . 250

xv



Bibliography 251

A An example transformed program 265

B Higher-order functions in the intensional style 267

xvi



List of Figures

1.1 Source-to-source program transformation. . . . . . . . . . . . . . . . 12

2.1 Computing the magnitude of a vector in Haskell. . . . . . . . . . . 23

2.2 Comparing normal order and applicative order term reduction se-

quences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Graph reduction of ‘double (3 * 2)’. . . . . . . . . . . . . . . . . 27

2.4 Two candidate graph implementations of the fixed point operator. . 28

2.5 Graph reduction resulting in a cyclic data-structure. . . . . . . . . . 29

2.6 A graph illustrating the sharing in the definition of fibs. . . . . . . 30

3.1 Three example EDTs for the same computation, exhibiting various

reduction step sizes in their nodes. . . . . . . . . . . . . . . . . . . . 47

3.2 Nilsson’s definition of direct evaluation dependency. . . . . . . . . . 49

3.3 An abstract interface to the EDT in Haskell. . . . . . . . . . . . . . 50

3.4 The top-down left-to-right wrong answer diagnosis algorithm. . . . 51

3.5 A (buggy) program for converting numbers in base 10 notation to

other bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 An example EDT diagram produced by the ‘draw edt’ command. . 60

3.7 An EDT for the program in Figure 3.5. . . . . . . . . . . . . . . . . 61

3.8 A small buggy program with higher-order functions. . . . . . . . . . 65

xvii



3.9 Two EDTs for the same computation, illustrating the different ways

that functional values can be displayed. . . . . . . . . . . . . . . . . 66

3.10 An EDT with functions printed in extensional style. . . . . . . . . . 67

5.1 A program for computing the area of a circle. . . . . . . . . . . . . 89

5.2 Code for constructing an EDT node. . . . . . . . . . . . . . . . . . 96

5.3 A method for constructing EDT nodes for pattern bindings, which

simulates the method used in Freya. . . . . . . . . . . . . . . . . . . 98

5.4 Code for constructing EDT nodes for pattern bindings. . . . . . . . 100

5.5 An EDT with functions printed in intensional style. . . . . . . . . . 105

5.6 Abstract syntax for core Haskell. . . . . . . . . . . . . . . . . . . . . 110

5.7 Transformation of declarations. . . . . . . . . . . . . . . . . . . . . 111

5.8 Transformation of expressions and alternatives. . . . . . . . . . . . 114

5.9 Transformation of types. . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 Relative performance of the transformed program compared to the

original, when an empty EDT is constructed. . . . . . . . . . . . . . 126

6.1 A type class for generic observation. . . . . . . . . . . . . . . . . . . 132

6.2 Optimised transformation of function declarations. . . . . . . . . . 148

6.3 Optimised transformation of types. . . . . . . . . . . . . . . . . . . 148

6.4 Optimised transformation of function application. . . . . . . . . . . 150

7.1 IO dependencies (extensional). . . . . . . . . . . . . . . . . . . . . . 160

7.2 IO dependencies (intensional). . . . . . . . . . . . . . . . . . . . . . 161

7.3 IO dependencies (intensional, except lamBind). . . . . . . . . . . . . 161

7.4 Memory usage versus input size with IO tabling enabled. . . . . . . 164

7.5 Running time with IO tabling enabled relative to the original program. 165

7.6 Percentage of nodes which come from functions in trusted standard

libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.7 Transitions between contexts. . . . . . . . . . . . . . . . . . . . . . 179

7.8 EDT size versus depth bound. . . . . . . . . . . . . . . . . . . . . . 182

xviii



7.9 Memory usage (relative to the original program) versus depth bound. 183

7.10 Running time (relative to the original program) versus depth bound. 184

7.11 Maximum depth of the EDT for the example programs. . . . . . . . 185

8.1 Evaluation of an observed expression. . . . . . . . . . . . . . . . . . 201

8.2 The GHood interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.3 Freya’s construction of the EDT during reduction. . . . . . . . . . . 210

8.4 Redex trail for the factorial computation. . . . . . . . . . . . . . . . 221

8.5 EDT for the factorial computation. . . . . . . . . . . . . . . . . . . 222

9.1 Computing the roots of a quadratic equation in Haskell. . . . . . . 244

9.2 An EDT for the program in Figure 9.1. . . . . . . . . . . . . . . . . 245

B.1 An example EDT diagram produced by the ‘draw edt’ command. . 269

xix





Chapter 1
Introduction

“Four bullet holes in your starboard wing, sir,” the sergeant reported, “and

one’s gone through your engine cowling and lodged in your magneto casing.”

“Sergeant, those aren’t bullet holes,” replied Barry; “a gremlin did that.”

And so, there on the Dover-London road, a new word was born.

The Gremlins

[Dahl, 1943]

1.1 No silver bullet

C
omputer programming — especially on a large scale — is fraught with

difficulty. In one of his many famous essays on Software Engineering,

Brooks [1975] observed:

Digital computers are themselves more complex than most things people

build: They have very large numbers of states. This makes conceiving,

describing, and testing them hard. Software systems have orders-of-

magnitude more states than computers do.

Likewise, a scaling-up of a software entity is not merely a repetition of

the same elements in larger sizes, it is necessarily an increase in the

number of different elements. In most cases, the elements interact with
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1.2 Bugs

each other in some nonlinear fashion, and the complexity of the whole

increases much more than linearly.

So far our most potent antidotes to the complexity of programming are high-level

programming languages, and discipline. However, as yet no silver bullet has emerged,

and sadly we continue to write and use programs which behave in unintended —

and occasionally catastrophic — ways. Many have argued that we are experiencing

a software crisis [Wayt Gibbs, 1994].

1.2 Bugs

Today the word bug is synonymous with computer malfunction. Yet the notion is

quite an old one; the etymology of bug can be traced back at least as far as the

1800s [Shapiro, 1987]. In common parlance a bug is an unintended behaviour of a

machine that is in some way related to a fault in its design or construction. Nasty

bugs exhibit seemingly unpredictable patterns of behaviour. These tend to arise in

systems with many parts, which interact in complex ways, making them extremely

hard to explain. Such failures can be so chaotic that they might as well be caused

by hoards of cackling green devils.

The truth — as far as I am aware of it — is that computer bugs are not the

responsibility of gremlins, but largely of those who write programs. A famous quip,

widely attributed to Nathaniel Borenstein, goes:

The most likely way for the world to be destroyed, most experts agree,

is by accident. That’s where we come in; we’re computer professionals.

We cause accidents.

In a way, the word bug distances the programmer from the fault. We find ourselves

exclaiming “there’s a bug in my program!” with the same indignation as “there’s a

fly in my soup!,” thus begging the question “who put it there?” Zeller prefers to use

defect to name the incorrect parts of the program code (putting the blame back on
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the programmer), and failure to name the externally observable malfunction which

occurs when a defective program is executed [Zeller, 2005].

A study conducted in 2002 by the National Institute of Standards and Tech-

nology (a government organisation in the United States of America) estimated the

annual cost of software failures to American economy at roughly 59.5 billion US

dollars, which was about 0.6 percent of the country’s gross domestic product at

the time [NIST, 2002]. Major contributing factors in the total cost are the lost

productivity of software users, and the increased resources expended in software

production. Clearly computer bugs are a big problem, but what can we do about

them?

1.3 Debugging

There are really two questions that need to be asked:

1. How can we make our programs less defective?

2. If a program has defects how can we find and fix them?

One school of thought is that programs should be proven correct, thus eliminat-

ing the need for debugging altogether [Hoare, 1969]. The old adage that “prevention

is better than a cure” also rings true in program development. Dijkstra was partic-

ularly vocal on this point [Dijkstra, n.d.]:

Already now, debugging strikes me as putting the cart before the horse:

instead of looking for more elaborate debugging aids, I would rather try

to identify and remove the more productive bug-generators!

However, there are several problems with this approach as a complete solution:

• Proofs must be made against a formal specification of the program. This leads

to the problem of debugging specifications, which is in general no simpler than

debugging programs [Shapiro, 1983].
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• Proofs can be difficult to develop, communicate and verify [De Millo et al.,

1979].

• Right or wrong, a large amount of programming is experimental, starting with

only imprecise specifications. Experimental programs may eventually evolve

into more formally prescribed systems. Nonetheless, there may be a lengthy

period of development where the intended behaviour of the program is only

partially defined. Hence there is very little than can be proved correct.

• Programming languages may be only informally defined and most widely used

contemporary languages have many pragmatic features which make proofs very

difficult.

• Current proof techniques do not scale to large programs.

In the absence of correctness proofs covering entire programs, which may be

unattainable for the reasons stated above, the next best strategy for ensuring the

reliability of software is testing. There are many ways to go about testing, but they

all share the same goal, which is to find input values which cause the program to

behave incorrectly. When a program is found to fail on a particular test case the

next thing we want to do is find out why, and then fix it. Explaining the reason for

program failure and fixing the problem is the domain of debugging, and that is —

in broad terms — the topic of this thesis.

In the early 1970s the structured programming style became popular, and it has

had a big influence and programming methodology to this day. One of the most

important ideas of structured programming is that programs should be decomposed

into small logical units, which have a single point of entry, and whose intended

behaviour is easily understood. Complex programming tasks are broken up into

smaller, more tractable problems, which are solved individually, and re-combined to

form a complete solution. Most popular languages since the 1970s have encouraged

structured programming one way or another. Example programming units include:

procedures in imperative languages, functions in functional languages, and predicates
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in logic languages.

In this thesis we focus on functional languages, so we will hereafter refer specif-

ically to functions as the units of a program.

Structured programming also provides a useful framework for debugging. We

imagine our program as a complex machine made up of many interconnected parts.

If the program fails on some input value, we know that one or more of the individual

functions must be faulty. We also know that a terminating execution only calls each

function in a finite number of different ways. Therefore a program execution can

be regarded as a search space whose elements are individual function calls. Each

function has an intended behaviour in the mind of the programmer, which can be

used to judge the correctness of each call. The intended behaviour can be described

in numerous ways, but the simplest, and probably most common way, is in terms

of the relationship between the function’s input and output values. Debugging is

therefore a search through this space for calls which point to defective functions.

In practice, finding bugs in the failed executions of programs can be extremely

labour intensive for two key reasons:

1. The internal behaviour of program execution is hidden, and thus hard to test

manually.

2. The search space can grow very large.

The first point relates to the fact that programs are written in high-level lan-

guages but are translated into low-level machine languages for execution. Typically

the machine is the hardware of the computer, although it could also be a simulated

machine in software. In either case we can probe the operations of the underlying

machine, but this tells us very little about the program as we know it, because many

vestiges of the original source code are lost in translation.

The second point relates to the fact that programs usually involve loops of com-

putation, such that a group of functions may repeatedly invoke one another in a

cyclic fashion. Each function in the group may be called in a large number of differ-

ent ways throughout the execution of the loop, and loops may be arbitrarily nested.
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Even a program with only a small number of functions can produce an enormous

search space.

There is a third point that exacerbates the difficulty of debugging, though it

is much worse in some languages than others: interference. This occurs when the

behaviour of a function is affected by an event which is not characterised by an

input or output value. Interference is rife in languages with a lax attitude to side-

effects. The trouble is that interference makes the behaviour of a function call highly

dependent on its context. This in turn complicates debugging because a judgement

about the correctness of an individual function call might require the user to consider

a great number of other function calls at the same time; they may not even know

a priori which other function calls are relevant. Also, if a function has side-effects,

they must be considered as part of the behaviour of the function, in addition to its

output. Side-effects can make reasoning about correctness more difficult because

their relative ordering is significant. For instance, a sequence of output statements

can have the wrong behaviour even though each individual statement is correct on

its own, simply because the order is wrong. A corollary is that languages which

limit the extent of side-effects will tend to be easier to debug.

The underlying philosophy of this thesis is that the burden of debugging can

be greatly reduced if we adopt a language without side-effects, and employ a semi-

automated debugging algorithm to systematically order the search space and allow

mechanical search.
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1.4 Debugging Haskell

Suffice it to say that the extensional properties of a functional program (what

it computes as its result) are usually far easier to understand than those of

the corresponding imperative one. However, the intensional properties of a

functional program (how it computes its result) can often be much harder to

understand than those of an imperative one, especially in the presence of

higher order functions and lazy evaluation.

Heap profiling of lazy functional programs

Runciman and Wakeling [1993]

The feature-set of a language can affect the kinds of bugs that are encountered,

so research into debugging tools is usually done in the context of a particular pro-

gramming paradigm.

We consider the problem of debugging Haskell programs. Debugging Haskell is

interesting as a topic for research because:

• Haskell is a promising language which provides several features that promote

safe programming practices. Despite this relative safety, Haskell programs are

not immune from bugs, and there is a need for debugging tools.

• The fundamentals of traditional debugging technology are in conflict with

Haskell’s key computational features: non-strict evaluation, and higher-order

functions. Though many debuggers exist in the mainstream, they are of lim-

ited efficacy for Haskell.

The mainstream of programming is dominated by the so-called imperative lan-

guages. Programs in this paradigm are composed of commands which are stateful

and destructive, hence the precise evaluation order of commands is very important.

As a result, imperative programs tend to be rigidly sequential, and programmers

are forced to be acutely aware of how the structure of their code relates to the steps

performed by the computer as the program executes. Debugging tools for imperative

programs follow suit.
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In contrast, functional programs are data-oriented. They focus on the construc-

tion and transformation of data objects by (non-destructive) function application.

Functional languages are often said to be declarative in nature. This means that

the basic blocks of programs — the functions — state a relationship between their

input and output values, but they do not explicitly give an order in which their

operations should take place. An advantage of this model is that it allows more

freedom in the way that programs are executed; lazy evaluation is a prime example.

The downside is that functional programmers tend to have only a fuzzy idea of how

their programs behave, step-by-step. Logical relationships, such as X depends on

Y, which are evident in the source code, and are fundamental to the programmer’s

reasoning, may not be obvious in the execution order. This means that step-wise

debuggers are a bad match for such languages. The difficulty of applying existing

debugging technology to lazy languages has been known since their conception. For

example see the discussion in Hall and O’Donnell [1985].

One of the hallmarks of functional programming is higher-order functions. As

the saying goes: functions are first class. Unfortunately, higher-order functions can

make debugging more difficult:

• Functions are abstract data types in Haskell, which means they can only be

observed indirectly via their behaviour.

• Higher-order functions complicate the relationship between the dynamic pat-

tern of function calls at runtime and the structure of the source code.

• Determining the correctness of higher-order function invocations can be men-

tally taxing for the user of the debugger.

A significant challenge in the design of debugging systems for Haskell is how to

reduce the cognitive load on the user, especially when many higher-order functions

are involved. This is an issue that has seen little attention in the design of debugging

systems for mainstream imperative languages because higher-order code is much less

prevalent there.
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1.5 Declarative debugging

Declarative debugging is based on a simple principle: a function is judged to be

defective if some call to that function is incorrect (produces the wrong output value

for its corresponding input values), and that call does not depend on any other

incorrect function calls. Such a call is said to be buggy. The dependency relation

between function calls allows a tree structure to be imposed onto the debugging

search space. Nodes in the tree represent individual calls, and a special root node

corresponds to the initial call which is made at the start of the program. Each

node is the parent of zero or more nodes. The evaluation of the function call in

a parent directly depends on all and only those function calls in its children. We

adopt the terminology of Nilsson and Sparud [1997], and call this tree an Evaluation

Dependency Tree (EDT).

Given an EDT, we can employ a diagnosis algorithm which automates the search

for buggy nodes.

The purely functional nature of Haskell makes it well suited to declarative de-

bugging for two reasons:

1. Functions make good building blocks because they are easily composed. This

encourages a bottom-up style of programming where complex functions are

built by connecting together the inputs and outputs of simpler ones. This

leads to programs which are highly structured and well suited to hierarchical

decomposition.

2. The answer produced by a given function call is totally determined by the

values of its inputs; there are no side-effects. Therefore the correctness of an

individual function invocation can be considered in isolation from its evaluation

context.

Conversely, declarative debugging is well suited to Haskell because the structure

of the EDT can reflect the structure of the source code, thus hiding the complicated

operational aspects of lazy evaluation from the user.
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Despite its many attractive features, declarative debugging is not the best solu-

tion for finding all kinds of bugs. In particular it is not well suited to performance

tuning. The main reason is that it is much more difficult for the user to judge the

correctness of a program’s time and space behaviour on a call-by-call basis. We

generally do not have a precise notion how much time or space an individual call is

likely to need. Instead we are much better at tackling performance tuning by other

means, such as the use of dedicated statistical profiling tools.

1.6 Research problems

The foundations of declarative debugging were established by Shapiro [1983] in the

context of pure logic programming. Since then, non-strict purely functional lan-

guages have emerged and flourished, and owing to many similarities between the

two paradigms, various people have investigated the potential for declarative debug-

ging in the functional setting.

Whilst the topic has been reasonably well explored, the ultimate goal of usable

debugging tools has remained elusive. The most significant roadblocks are portabil-

ity and scalability. Portability relates to the independence of the tool to its working

environment, including the computer hardware, the operating system, and the com-

piler. Scalability relates to the class of all programs that can be effectively debugged

with the tool.

1.6.1 Portability

One way to make a portable debugger is to write it in the same language as its input

programs. If someone wants to debug a program written in language X, it is a fair

bet that they will have an implementation of X that works in their environment.

If we are lucky, the debugger will also be able to debug itself, though this is not a

primary goal. The trouble is that the language in question may not always be ideal

for this task.

Debuggers are unusual programs in that they are highly reflective. In other
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words, they are designed to observe and perhaps manipulate the behaviour of other

programs, the debuggees. When the debugger and the debuggee share the same

language, we encounter the difficult issue of self-reflection. Few general-purpose

languages are good at this.

The success of Shapiro’s work is due largely to the expressive reflection facilities

that are built into Prolog. Haskell is much more limited in this regard, particu-

larly because of the discipline imposed by its type system. Haskell’s types promote

safe programming practices because they provide a static consistency check, that

ensures data abstraction boundaries are not broken. The reflective facilities of Pro-

log are difficult to mix with Haskell’s type system because they allow a program to

undermine the data abstraction boundaries that the types are supposed to uphold.

1.6.2 Scalability

The scalability of a debugger has two dimensions:

1. How much of the total feature-set of the language is supported by the debug-

ger?

2. How expensive, in terms of resource consumption, is the tool?

The most challenging features of Haskell for debugging are lazy evaluation and

higher-order functions.

Prohibitive space usage is another significant hurdle. Haskell data objects in-

habit many different representations during the execution of a program, starting

from program expressions, and ending as computed values. A heuristic of declar-

ative debugging is that it is easier for the user of the debugger to determine the

correctness of a function call if its argument and result values are displayed in their

final representation. Lazy evaluation tends to intersperse incremental evaluation

over numerous data objects, which makes it very difficult to predict when an in-

dividual object will reach its final representation. The simplest solution is to be

conservative, and postpone all debugging until the debuggee has terminated. This
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Figure 1.1: Source-to-source program transformation.

ensures that all observed values will be displayed in their final representation. Un-

fortunately this means that the whole EDT must be created prior to debugging.

Since the EDT maintains a reference to every intermediate data object computed

by a program, its size grows proportionally to the length of the program execution.

On a modern machine the entire available memory can be exhausted in a matter

of seconds, limiting the debugger to all but the shortest program runs. Numerous

solutions to the space problem are considered in this thesis.

1.7 Methodology

We employ a source-to-source program transformation, where the debuggee is trans-

formed into a new Haskell program which computes both the value of the debuggee

and an EDT suitable for declarative debugging. The transformed program is com-

piled and linked with a bug diagnosis library and the whole package forms the

debugger. This process is illustrated in Figure 1.1.
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Source-to-source program transformation has two key features that make it at-

tractive:

1. The output is Haskell which enhances the portability of the debugger.

2. The transformation algorithm is syntax directed, and relatively simple to im-

plement, especially when compared to the complexity of a whole compiler or

interpreter.

1.8 Contributions

The main contribution of this thesis is a source-to-source program transformation

which facilitates declarative debugging for non-strict functional programming lan-

guages. We have demonstrated the feasibility of our approach by building a working

debugger, called buddha, which supports full Haskell 98. We believe this was the

first declarative debugger to support the whole language.

We provide a flexible approach to debugging higher-order code. For each function

in the program the user has the option of printing higher-order instances of the

function in one of two ways, we call them the intensional and extensional styles.

The intensional style is based on a function’s term representation. The extensional

style is based on the complete set of argument/result mappings for a function in

given program run. The extensional style is particularly helpful in situations where

new functions are built dynamically by a program. In such cases the intensional

style can become unwieldy and difficult for the user to understand. We are the first

to incorporate the extensional style into declarative debugging.

In order to support the extensional style of printing functions we have extended

the traditional definition of the EDT that is found in the literature, incorporating a

more general notion of “evaluation dependency”.

On top of the extensional style we provide a novel technique for displaying I/O

values which facilitates declarative debugging of I/O computations. Earlier attempts

at building declarative debuggers for non-strict purely functional languages have not
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tackled this problem.

We show that the execution time overheads introduced by the transformation are

within reasonable limits on a selection of non-trivial programs, and that the space

usage of the EDT can be reduced by adapting previously established techniques.

We provide a formal definition of the transformation algorithm as a series of

rules over a core Haskell syntax. The transformation employed by buddha follows

these rules very closely, which makes it a remarkably concise implementation.

1.9 Structure of the thesis

The rest of this thesis proceeds as follows. Chapter 2 provides a thorough introduc-

tion to Haskell. Readers who are already familiar with Haskell, or something similar,

may wish to skim this chapter. Chapter 3 introduces the key concepts of declarative

debugging, and shows how buddha works in an example debugging session. It also

formalises the concept of an EDT and shows how it is closely related to the concept

of evaluation dependency. Chapter 4 discusses the intricacies of judging the cor-

rectness of function calls in the light of lazy evaluation and higher-order functions.

Chapter 5 defines the program transformation employed by buddha, and measures

its performance on a sample of five non-trivial programs. Chapter 6 shows how bud-

dha implements a universal printer for Haskell data objects. Chapter 7 considers the

practical aspects of debugging full Haskell 98, in particular debugging I/O compu-

tations, and keeping resource usage within reasonable limits. Chapter 8 summarises

related work. Chapter 9 suggests future avenues for research, and concludes.
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Chapter 2
Haskell

The functional programmer sounds rather like a medieval monk, denying

himself the pleasures of life in the hope that it will make him virtuous.

Why functional programming matters

[Hughes, 1989]

2.1 Introduction

H
askell is a high-level general-purpose programming language. It is the

product of a community spread across the world, consolidating many

years of research in functional programming languages. Amongst many

other things, it is a springboard for new language technology, a tool for program

development, and a vehicle for education. And of course it is a central character in

this thesis.

This chapter aims to give an overview of Haskell, concentrating on its most

interesting and unique aspects, those which set it apart from the majority of other

popular programming languages in use today. Haskell is far too big to describe in

detail in one chapter. Indeed the Language Report — the authoritative reference

for Haskell — is some 270 pages long in book form [Peyton Jones, 2002]. The

best that can be hoped for in the present context is to capture the essence of the
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language. Readers who are already familiar with Haskell are advised to skip directly

to Chapter 3.

2.1.1 Outline of this chapter

The rest of the chapter proceeds as follows. In Section 2.2 we discuss the key features

of Haskell. Then we turn our attention to semantics in Section 2.3. In Section 2.4

we consider the use of monads to integrate input and output (I/O) with the purely

functional paradigm, and also abstract over various kinds of computational features.

In Section 2.5 we discuss two pragmatic features of Haskell which have proven useful

in the construction of buddha. In Section 2.6 we highlight some helpful reference

material from the literature.

2.2 Key features of Haskell

2.2.1 Syntax

At its core, Haskell’s syntax is essentially the language of the Lambda Calcu-

lus [Church, 1941, Barendregt, 1984]. Layered on top of that are various programmer-

friendly constructs, such as named declarations, data types, pattern matching, mod-

ules and so forth; most of which are heavily influenced by Turner’s family of lan-

guages, especially Miranda [Turner, 1985]. Perhaps the most striking feature of

Haskell’s syntax — especially for those who are familiar with mainstream impera-

tive languages — is its minimal use of punctuation. Function application is simply

the juxtaposition of terms, and indentation provides grouping and delineation with-

out the need for semi-colons and braces. A complete definition of the syntax, plus

desugaring rules into a simple core language, are provided in the Language Report.

For more information about Haskell’s heritage, including its syntactic inheritance,

see Hudak [1989].
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2.2.2 Purity

Informally, functions in Haskell behave like functions in mathematics: they are

simply mappings from inputs to outputs. Unlike imperative languages, there are

no side-effects — a function application cannot evaluate to, say, an integer and

along the way print a message to the terminal. Actually, this view is somewhat

naive, and Haskell functions differ from “mathematical” ones in a couple of ways.

First, Haskell functions can diverge, by failing to terminate, or by some other kind

of runtime error, such as attempting to divide a number by zero. Second, Haskell

programs must at some point perform side-effects because they would be useless

otherwise. The very nature of all computer programs is to change the state of their

environment, e.g. print an image on the screen, write a file to the disk drive, or send

a message over the network. The presence of divergent programs is not normally

grounds for considering a language impure,1 however side-effects are a different story.

One the one hand, pure functions are not allowed to perform side-effects. On the

other hand, side-effects are an essential part of every computer program. This is

a long-standing problem for purely functional languages. The solution in Haskell

is monads [Peyton Jones and Wadler, 1993, Peyton Jones, 2001]. The result is

a stratified language, with a pure part and an impure part. The performance of

impure side-effecting operations can have no observable effect on the pure part of

the language. The role of monads is to interface the pure and impure parts of the

program in a safe way. The intriguing thing about this approach is that all of the

user’s program can be written with pure functions, and the side-effecting operations,

called actions, are performed externally. It is as if the Haskell program computes

an imperative program as its result, which is then passed to an external evaluator

to make all its actions happen.2 We discuss monads in more detail in Section 2.4.

Purely functional languages have a certain degree of theoretical elegance, but

1Turner [2004] argues for strong functional languages, where all functions are totally defined
(i.e. no divergent programs). In contrast, he classifies languages which permit divergent functions
as weak functional languages.

2The evaluation of actions and pure functions is interleaved in typical programs, however the
separation still holds: the impure parts have no impact on the pure parts.
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that is not their only virtue. Purity tends to simplify the difficult task of reasoning

about programs. The often promoted feature of pure languages is referential trans-

parency, the property that an expression always has the same meaning regardless

of the context in which it occurs. This is also a benefit for debugging programs,

because the correctness of a program fragment, such as a function definition, can

be considered in relative isolation from the rest of the program [Hudak, 1989]. If

a definition is correct, all its uses are automatically correct, no matter where they

occur. For a compiler, or any code transforming tool, the correctness of program

transformations is easier to verify than for an impure language.

Sabry [1998] provides a more formal definition of purely functional languages.

His requirements are generally that the language must be a conservative extension of

the pure Lambda Calculus (in other words, the language must have functions), and

that the meaning of the program is independent of the parameter passing mechanism

used (modulo divergence). Under this definition Haskell is pure, as are subsets of

Standard ML and Scheme.

2.2.3 Higher-order functions

The hallmark of the functional paradigm, pure and impure, is that functions are first

class. This means that functions can be passed around like any other kind of value

— they can be arguments or results of other functions and even stored within data

structures. Higher-order programming opens up new opportunities for abstraction

and generalisation that can make the program more modular and flexible [Hughes,

1989]. Higher-order functions are commonly used in Haskell, as evidenced by the

large number of them in the standard libraries, and they are central to many pro-

gramming idioms, such as monads.

Haskell’s functions are curried.3 This means that it is possible to view all func-

tions as if they have only one parameter. A multi-parameter function can be turned

3Functions in the Lambda Calculus are also curried. However, the idea is due to Schönfinkel
[1924]. Curry and Feys [1958] made extensive use of the idea and introduced the current notation.
The term currying is, of course, in honour of Curry, whose first name happens to be Haskell!
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into a unary function by having it return a (curried) function as its result. The

benefit of currying is that it provides a very concise way to make new functions

from old ones by function application. For example, since multiplication is curried,

it is possible to write (3*); the result is a new function that multiplies its argument

by 3.

Despite the fact that Haskell functions are curried it is normal to talk of function

arities that are higher than one. This is because Haskell provides syntactic sugar for

function declarations which allows multiple parameters to be named together. For

example, consider the const function:

const x y = x

We would usually say that const has an arity of two because it has two parameters

to the left of the equals sign. When a function is given fewer arguments than its

arity, the application is said to be partial. When sufficient arguments have been

supplied, the application is said to be saturated.

2.2.4 Static types with polymorphism and overloading

Haskell is endowed with a rich type system with many novel aspects. Principally,

the type system is based on the famous Hindley-Milner algorithm [Hindley, 1969,

Milner, 1978], which at compile time attempts to infer types for all expressions in the

program. The program is rejected by the compiler if type checking fails. The rigidity

of the system is relaxed somewhat by the fact that functions can be polymorphic,

meaning that the one definition can operate on many different types of arguments.

For example, the list reverse function has type ‘reverse :: [a] -> [a]’. The

double-colon is read as ‘has the type’, the square brackets denote the type of lists,

and the arrow denotes the type of functions. The ‘a’ is a type variable, which is

implicitly universally quantified over the whole type.

Type inference means that the types of expressions can be calculated without

any additional annotations — the programmer is not obliged to tell the compiler
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what the types are. The benefit is that program definitions are shorter and simpler,

and generally easier to modify.

Functions can be overloaded by the use of type classes [Wadler and Blott, 1989,

Hall et al., 1996]. A class specifies an interface which is made up of one or more type

signatures. Types are made instances of classes by the provision of functions that

implement the interface, specialised to the particular type in question. A classic

example is equality. The standard environment of Haskell specifies a class, called

Eq, that collects all types that have equality defined on their values. The definition

of the class looks like this (simplified for presentation):

class Eq a where

(==) :: a -> a -> Bool

The class is parameterised over types, by the variable a. To make some type T an

instance of Eq we must provide an implementation of == such that each occurrence

of a in the type scheme is replaced by T . For example, the boolean type with values

True and False, can be made an instance of Eq in the following way:

instance Eq Bool where

True == True = True

False == False = True

x == y = False

This instance declaration says what the function == means in the type context of

booleans, but it says nothing about equality in any other type context. The kind of

polymorphism exhibited by == is different to that of reverse, because the latter has

the same behaviour for all type contexts in which it is used, but the former varies,

and it may not even be defined for some types.

2.2.5 Non-strict evaluation

Programming languages are often characterised by how they perform parameter

passing. In this regard they are said to be either strict or non-strict. A function is

strict in an argument if its result is undefined whenever that argument is undefined.

For example, consider some function f with one argument. If ⊥ stands for the
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undefined value (i.e. a divergent computation), and f⊥ = ⊥, then f is strict in its

argument, otherwise it is non-strict in its argument. A strict programming language

employs a parameter passing technique which forces all functions to be strict in all

of their arguments, whereas a non-strict programming does not.

Strict parameter passing is usually implemented by eager evaluation, also called

call-by-value. That is, when a function call is made, all argument expressions are

fully evaluated prior to entering the callee. Most languages are strict for two reasons:

1. Eager evaluation is relatively easy to implement efficiently on stock hardware.

2. The order in which side-effects are executed is more easily related to the struc-

ture of the source code under strict evaluation (compared to non-strict evalu-

ation).

Non-strict parameter passing is much more liberal. The most common way of

implementing it is lazy evaluation, or call-by-need. Under lazy evaluation, argument

expressions are never evaluated unless they are needed, and if so they are evaluated

once only. Multiple uses of an argument share the same value. Sometimes laziness

and non-strictness are mistakenly equated. However, other strategies can be used to

give non-strict behaviour, such as lenient evaluation [Tremblay, 2001], and hybrids

of lazy and eager evaluation [Maessen, 2002, Ennals and Peyton Jones, 2003b].

Haskell is often called a “lazy functional language”, but this is not quite true. It

is non-strict, though most Haskell implementations are lazy by default. An excellent

reference on the topic of evaluation strategies and the pitfalls of confusing laziness

with non-strictness is given in Tremblay [2001].4

On the surface it would appear that non-strict evaluation, especially the lazy

kind, is optimally efficient because argument expressions that are never needed are

never evaluated, potentially saving much work. Sometimes this is true, but in prac-

tice the advantage is mostly lost because a significant amount of additional com-

plexity is needed in the runtime environment of the language to implement laziness.

4Although, he suggests that Haskell is a lazy language!
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Modern computer architectures are vigorously optimised for certain types of code

sequences and memory usages — especially ones that exhibit a high degree of tem-

poral and spatial locality [Hennessy and Patterson, 1996]. Current day runtime

environments for lazy languages are penalised on such hardware because they tend

to do a poor job at achieving this kind of locality [Nethercote and Mycroft, 2002].

Paradoxically, experience shows that to be lazy, programs often have to work extra

hard. Also, the space usage of non-strict evaluation is often much worse than what

it would be under strict evaluation. First, because the size of an unevaluated expres-

sion can be much larger than its ultimate value, and second, because unevaluated

expressions can unduly retain references to other heap allocated objects that would

otherwise be garbage collected.

The true benefit of non-strictness — probably why it wasn’t abandoned long ago

for efficiency reasons — is that it promotes a more declarative style of programming.

Recursive equations are more natural and can be used more liberally in a non-strict

setting, allowing for such exotic things and infinite and cyclic data-structures [Trem-

blay, 2001]. Non-strictness also tends to decouple the interfaces between producers

and consumers of data making the program more modular [Hughes, 1989].

2.2.6 Implicit memory management

The management of memory allocation is implicit in Haskell. This means that

data values are added and removed by the runtime environment automatically. A

technique called garbage collection cleans up any data that is no longer needed

by the program, reclaiming its memory for future use. This removes a very large

burden from the programmer, and also saves programs from a number of nasty

memory related bugs. In Haskell, garbage collection is absolutely necessary for

productive programming because non-strict evaluation and higher-order code make

it very difficult for the programmer to safely manage memory themselves.
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start = mag [1,2]

mag xs = sqrt (sum (map sq xs))

sum [] = 0

sum (x:xs) = x + sum xs

map f [] = []

map f (x:xs) = f x : map f xs

sq x = x * x

Figure 2.1: Computing the magnitude of a vector in Haskell.

2.3 Dynamic semantics

Haskell is non-strict, and thus it permits many different evaluation strategies. How-

ever, most implementations are lazy, hence that is the focus of this section. The

intention is not to nail down the dynamic semantics of Haskell — indeed no (com-

plete) formal description of it exists in the literature — but rather to introduce

certain concepts and terminology that will be important for later parts of the thesis.

As it happens, lazy evaluation exhibits all the properties that make such languages

hard to debug.

First, we use term rewriting to show the different order in which expressions are

reduced using lazy and eager strategies. Then we use graph reduction to show how

sharing is normally implemented in lazy languages. We also consider cyclic values.

2.3.1 Term rewriting

Consider the program in Figure 2.1. The function mag computes the magnitude of

a vector (represented as a list of numbers). It works as follows: each element of the

vector is squared, the result is summed, and the square root is taken. Evaluating

the program corresponds to demanding the value of start. It is assumed that

sqrt, + and * are primitives, and that they evaluate their arguments eagerly, in a

left-to-right manner.

Term rewriting is a simple way to visualise program evaluation, and is especially

useful for comparing different evaluation strategies. The process begins with start
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which is replaced by its body. The body is then “reduced” until it reaches a final

state, called a normal form. In general we are not guaranteed to reach a normal

form, so the process of reduction may continue forever in some cases. Each step in

the reduction represents a simplification of the term from the previous step. The

idea is to search in the current term for a reducible expression (redex ) and replace it

with an equivalent, but more evaluated form. A term is in normal form when it has

no redexes, however lazy evaluators usually opt for a weaker kind of normal form;

more on that later. Function definitions provide reduction rules. Redexes are terms

that match the left-hand-side of a rule (the function head). For example, the first

equation of sum, says that the term ‘sum []’ is a redex, and it can be replaced with

0. The second equation for sum says that ‘sum (x:xs)’ is also a redex, and it can be

replaced with ‘x + sum xs’, where x and xs are parameters which can be replaced

by arbitrary terms. Reduction rules are assumed for the primitive functions, and in

particular, applications of +, * and sqrt do not become redexes until their arguments

are fully evaluated numbers.

Given a term with multiple redexes, which one should be reduced first? The nor-

mal order strategy says to pick the leftmost outermost one. Whereas the applicative

order strategy says pick the leftmost innermost one. It is well established (at least

for the Lambda Calculus) that if the original expression has a normal form then the

normal order strategy will find it, whereas the applicative order may not. However,

there are terms which can never be reduced to a normal form no matter what or-

der of evaluation is chosen. Choosing the “leftmost outermost” redex corresponds

to evaluating a function application without first evaluating the arguments, whilst

“leftmost innermost” is the opposite. Thus the normal order is non-strict and the

applicative order is strict.

Figure 2.2 shows the reduction of the vector magnitude program using normal

order and applicative order strategies. In this case neither strategy is better than

the other in terms of the number of reduction steps. What is interesting is the

difference in the sequence of reductions. Each new line in the sequence is derived
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Normal order (non strict)

start

mag (1 : 2 : [])

sqrt (sum (map sq (1 : 2 : [])))

sqrt (sum (sq 1 : map sq (2 : [])))

sqrt (sq 1 + sum (map sq (2 : [])))

sqrt (1 * 1 + sum (map sq (2 : [])))

sqrt (1 + sum (map sq (2 : [])))

sqrt (1 + sum (sq 2 : map sq []))

sqrt (1 + (sq 2 + sum (map sq [])))

sqrt (1 + (2 * 2 + sum (map sq [])))

sqrt (1 + (4 + sum (map sq [])))

sqrt (1 + (4 + sum []))

sqrt (1 + (4 + 0))

sqrt (1 + 4)

sqrt 5

2.236

Applicative order (strict)

start

mag (1 : 2 : [])

sqrt (sum (map sq (1 : 2 : [])))

sqrt (sum (sq 1 : map sq (2 : [])))

sqrt (sum (1 * 1 : map sq (2 : [])))

sqrt (sum (1 : map sq (2 : [])))

sqrt (sum (1 : sq 2 : map sq []))

sqrt (sum (1 : 2 * 2 : map sq []))

sqrt (sum (1 : 4 : map sq []))

sqrt (sum (1 : 4 : []))

sqrt (1 + sum (4 : []))

sqrt (1 + 4 + sum [])

sqrt (1 + 4 + 0)

sqrt (1 + 4)

sqrt 5

2.236

Figure 2.2: Comparing normal order and applicative order term reduction sequences.
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by reducing the previous one using the redex indicated by the underline. Both

strategies begin in the same way and perform the same reductions when there is

only one redex to choose from. However, when there are multiple redexes, they do

different things. Perhaps the most salient point, in terms of debugging programs, is

that normal order reduction is more difficult to reconcile with the structure of the

code than applicative order. This is particularly obvious with the recursive calls in

sum. In most cases, the programmer’s intuition about how the program is evaluated

follows the structure of the source code. Statically, sum recursively calls itself. In

the applicative order, each the the reductions of sum occur consecutively, and its

argument is always a list in normal form. In the normal order the reductions of

sum are interspersed with those of sq, * and map, and its argument is not always

a list in normal form (in the first two reductions it is a complex expression). The

problem is that standard debugging techniques that trace the execution step by step

are much less useful for a non-strict language because it is hard for the programmer

to relate the order of reductions with their mental model of the program. Also,

in the non-strict setting, the arguments and results of function applications will

often be complex expressions. Understanding a function’s actual behaviour relies on

inspecting the result it produced for its given arguments, however this can be more

difficult when those values are only partially reduced.

A key feature of lazy evaluation is the sharing of argument expressions, though

this aspect is missing from the normal order term reduction discussed above. Con-

sider the simple program below:

double x = x + x

start = double (3 * 2)

Normal order reduction of start proceeds as follows:

start

double (3 * 2)

(3 * 2) + (3 * 2)

6 + (3 * 2)

6 + 6

12
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C

+

* 3

2

A

double

2
+ 6

B

* 3

D
12

Figure 2.3: Graph reduction of ‘double (3 * 2)’.

Notice that double duplicates its parameter in its body. This causes repeated eval-

uation of the expression ‘3 * 2’. Lazy evaluation avoids this redundancy. Most

implementations of lazy evaluation are based on graph reduction because graphs

provide the necessary identity for terms which enables sharing.

2.3.2 Graph reduction

Graph reduction proceeds along the same lines as term reduction. Initially, the

program is a complex graph, and redexes are sub-graphs that can be simplified.

Figure 2.3 depicts the graph reduction of the example program. Vertices in the

graph represent function applications, which are connected to their argument graphs

by directed edges, and terminals represent variables or constants. All application

nodes are binary due to currying. Notice that the two arguments of + share the

same graph representation of ‘3 * 2’. This saves one reduction step over the term

rewriting evaluation because the redundant re-evaluation of ‘3 * 2’ is avoided.

Sharing and cyclic structures

Certain infinite values can be represented very compactly by taking advantage of

the potential for self-sharing, or cycles, within a graph. The classic example is the

infinite list of ones:

ones = 1 : ones
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fY

f f

f f

Figure 2.4: Two candidate graph implementations of the fixed point operator.

A non-strict language enables us to write functions which can operate on a finite

prefix of this list without causing non-termination. Whether or not ones is repre-

sented with a cyclic graph depends on how recursion is implemented, and Haskell

does not make any specific requirements in this regard. The textbook approach to

implementing recursion is to introduce a new function called Y, which computes the

fixed point of its argument:

Y f = f (Y f)

Each recursive equation in the program can be turned into non-recursive one by the

use of Y. The result is that Y is the only recursive part of the program, which can be

implemented as some kind of primitive operation. For example, ones can be made

non-recursive in the following way with the help of Y:

ones’ = \r -> 1 : r

ones = Y ones’

A few reductions of ones shows the effect of Y:

ones

Y ones’

ones’ (Y ones’)

(\r -> 1 : r) (Y ones’)

1 : (Y ones’)

1 : ones’ (Y ones’)

1 : ((\r -> 1 : r) (Y ones’))

1 : (1 : (Y ones’))

...
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f

A

:

r

1

B

f r r

: 1

r

C

: 1

Figure 2.5: Graph reduction resulting in a cyclic data-structure.

How might Y be implemented? Figure 2.4 shows two candidate graph encodings.

Lambda abstractions are encoded with a normal graph representing the function

body extended with a edge connecting the body to the variable bound in the func-

tion head. The first representation of Y is a very direct translation of the function

definition into graph notation, and the second uses cycles in a clever way, giving a

more succinct representation of the same function.

Figure 2.5 shows the graph reduction of ‘Y ones’’, using the cyclic representation

of Y. The end result is a cyclic structure. The benefit of the cyclic representation is

that the list consumes only a constant amount of space.

The graph reduction of ‘double (3 * 2)’ shows that the sharing of graphs can

reduce the amount of work needed to evaluate an expression. In that example, the

time saved was modest, but sharing can have a dramatic effect on the complexity of a

computation. Consider the code below, which computes the infinite list of Fibonacci

numbers, called fibs:

fibs :: [Integer]

fibs = 1 : 1 : zipPlus fibs (tail fibs)

zipPlus (x:xs) (y:ys) = x + y : zipPlus xs ys

zipPlus xs ys = []

tail (x:xs) = xs

Figure 2.6 illustrates the initial graph representation of the body of fibs. Notice
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tail

(:) 1

zipPlus

Figure 2.6: A graph illustrating the sharing in the definition of fibs.

that the recursive references to fibs in the body of the function are represented as

edges to the top node of the graph, creating a compact cyclic form. Computing the

nth element of that list has time complexity proportional to n, because recursive

references to fibs are shared and thus not re-computed upon every call. If the

recursive references to fibs were not shared, the computation of the nth Fibonacci

number would be exponential in n, because each new reference to fibs produces two

more references. We must be careful in the construction of the debugger to preserve

sharing in the underlying program, lest we risk a severe performance penalty in some

cases.

Weak head normal form

Previously it was stated that reduction continues until the expression is a normal

form. Under lazy evaluation this it not quite true; reduction continues until the

outermost expression reaches a weaker kind of normal form called weak head normal

form (WHNF). An expression is in WHNF if it is a manifest function (a lambda
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abstraction or let-bound function), a partial application of a manifest function, or if

it is an application of a data constructor to zero or more arguments. The body of the

lambda abstraction and the arguments of the applications do not themselves have

to be normal forms (weak head or otherwise), they can be arbitrary expressions.

The effect is that, at the end of evaluating a program, some redexes might remain

unevaluated. For debugging, this means that when values from the program are

printed, there is a good chance that some of them will be only partially computed,

even if printing is delayed until after the program is finished its normal execution.

This requires some way of showing the unevaluated parts that the user can under-

stand. This issue does not arise for strict languages, because they usually evaluate

to normal form terms, thus upon termination of the program there are no redexes

left.

2.4 Monads and I/O

Our biggest mistake: Using the scary term “monad” rather than “warm fuzzy

thing”.

Wearing the hair shirt: A retrospective on Haskell

[Peyton Jones, 2003]

Haskell’s standard library provides an abstract type ‘IO t’ which describes a

computation that produces a value of type t and may cause side-effects. Side-

effects are characterised by an in-place modification to the state of the world, where

the world is made available to the program via an operating system, or some such

environment. Typical side-effects are reads/writes on a stateful device such as a disk

drive, or memory buffer. For side-effects to be predictable (and thus useful for a

programmer) their relative ordering must be manifest in the source code. The catch

is that in a non-strict language the order of evaluation is not easily correlated with

the structure of the program. What is needed is a means for introducing determinism

in the order that side-effects are performed, without adversely compromising the

non-strict semantics of the purely functional part of a program.
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The IO type on its own does not guarantee the correct semantic properties of I/O

in Haskell. The role of the type is to denote an expression that possibly performs a

side-effect, however it says nothing about when the effect will be performed. Four

additional ingredients are required:

1. Primitive effects (such as reading from and writing to a file).

2. An effect sequencer.

3. A method for injecting pure (non side-effecting) values into the IO type.

4. A means for making IO computations happen.

Primitive effects are provided by the runtime environment. Sequencing is done

by:

(>>=) :: IO a -> (a -> IO b) -> IO b

which is commonly pronounced bind. The first argument to (>>=) is an IO com-

putation producing a value of type ‘a’, the second argument is a function which

consumes the output from the first computation producing a new IO computation

as its result. Nested applications of (>>=) can be used to ensure that sequences

of IO computations occur in the order that they are syntactically specified. Pure

computations are inserted into the sequence by ‘return :: a -> IO a’. By con-

vention, each Haskell program must include a top-level identifier called main with

type ‘IO t’. The runtime environment drives the sequence of IO computations which

are bound to main.

The standard library does not provide the programmer with a method to “run”

IO computations on their own; in short there is no function of type ‘IO a -> a’.5

The only way to manipulate an IO value is with (>>=), whose type requires that a

new IO value is produced as its result. Thus the type system ensures that there is

a well defined order for all side-effects produced by the program.

5Actually, Haskell does provide a “back door” to the IO type called unsafePerformIO, which we
describe in Section 2.5.
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Perhaps one of the most surprising aspects of Haskell is that the machinery

introduced for I/O can be generalised to other kinds of computational features.

The generalisation is called a monad, which consists of a type constructor ‘t’, and

versions of (>>=) and return parameterised over t. An abstract interface to monads

is provided by a type class:

class Monad t where

return :: a -> t a

(>>=) :: t a -> (a -> t b) -> t b

Individual monads are simply instances of this class, where the parameter t is re-

placed by some type constructor, such as IO.6

A simple example is the failure monad, which represents computations that can

either fail, or succeed with exactly one result. The two possible outcomes are encoded

by the Maybe type:

data Maybe a = Nothing | Just a

Sequencing works as follows:

Nothing >>= x = Nothing

Just x >>= f = f x

Failure propagates upwards, whilst the values of successful computations are passed

from left to right. Computations which (trivially) succeed are constructed like so:

return x = Just x

One of the advantages of the monad abstraction is that it allows us to write

functions which are parameterised by the type of monad, for instance:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f [] = return []

mapM f (x:xs)

= f x >>= \y ->

mapM f xs >>= \ys ->

return (y:ys)

6Formally, to qualify as a monad, the implementations of >>= and return must satisfy three
laws, though we do not dwell on them here since they are of no great consequence for the rest of
the thesis.
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This is a generalisation of the list-map function, whose semantics depends, in part,

on the particular monad which is used.

Haskell provides some syntactic sugar for monads, called do-notation, which

resembles the sequential statement notation of imperative languages. Using this

notation the recursive equation of mapM can be written as follows:

mapM f (x:xs) = do

y <- f x

ys <- mapM f xs

return (y:ys)

Do-notation is desugared like so (somewhat simplified):

do { e } ⇒ e

do { p <- e; stmts } ⇒ e >>= \p -> do { stmts }

The use of (>>=) in the desugaring means that do-notation works for any type of

monad.

Other common uses for monads include: state threading, parsing, exceptions,

backtracking, and continuations. Wadler [1993] provides a survey of many interest-

ing examples. An operational semantics for the I/O monad (and various extensions)

is given in Peyton Jones [2001].

2.5 Pragmatic features

Haskell includes two primitives which are helpful for pragmatic reasons:

seq :: a -> b -> a

unsafePerformIO :: IO a -> a

seq introduces strict evaluation into the language, and unsafePerformIO allows

possibly side-effecting expressions to be treated as if they were pure expressions.

The Haskell Report gives a denotational semantics for seq as follows:

seq ⊥ b = ⊥

seq a b = b, if a 6= ⊥
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The main use for seq is to force the evaluation of its first argument in situations

where delaying that evaluation may have unwanted consequences; typically to avoid

space leaks. The lack of a formal operational semantics for Haskell means that the

relative order of evaluation of the arguments to seq is unspecified. Despite this, it

is often assumed that — as the name suggests — the first argument is evaluated

before the second argument, and this is the semantics that most compilers provide.

seq is also used to implement a strict function application operator as follows:

($!) :: (a -> b) -> a -> b

f $! x = seq x (f x)

We use seq and $! in the implementation of buddha, and we assume the operational

semantics described earlier.

unsafePerformIO allows an IO computation to be “run” in an arbitrary context.

As its name suggests, the function can be unsafe to use. For instance, in conjunction

with other IO primitives, it can be used to cause a program to crash. Nonetheless,

there are legitimate uses for unsafePerformIO. For example, Haskell supports a for-

eign function interface (FFI) [Chakravarty, 2002], which allows Haskell programs to

interface with code written in other languages. It is assumed that foreign procedures

may perform side-effects, so the FFI requires that foreign calls return their results

in the IO type. Some foreign procedures behave like pure functions. Wrapping such

calls in unsafePerformIO allows them to be treated as pure functions from within

Haskell.

Another use for unsafePerformIO is to observe the behaviour of programs, for

the purpose of implementing program monitors and debuggers. As Reinke [2001]

notes, unsafePerformIO allows us to attach hooks to the underlying evaluation

mechanism. A simple example of this practice is demonstrated below, where seq

and unsafePerformIO are used in conjunction to provide a very primitive tracing

facility:

trace :: String -> Bool

trace str = seq (unsafePerformIO (putStrLn str)) False
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trace takes a string argument, prints it to the standard output device, and returns

False. It is intended to be used in conjunction with Haskell’s guarded equation

notation. Recall the mag function from Figure 2.1. Suppose that we want to print

a debugging message each time mag is called, which shows the value of its argu-

ment, without changing the value that mag computes. We can do this by adding an

additional equation to the start of the function like so:

mag xs | trace ("mag " ++ show xs) = undefined

mag xs = ... -- the original definition of mag

undefined :: a

undefined = undefined

In a multi-equation function definition, if all the guards in the first equation fail,

execution “falls through” to the following equation (if one exists), and so-on until a

successful match is found, or all the equations are exhausted. When mag is called,

the first equation will be tried. trace always returns False, which causes the

guard in the first equation to fail (so its body is not evaluated). This causes the

second equation to be tried, leading to the normal evaluation of mag. However, a

consequence of the call to trace is a side-effect which prints the desired debugging

message to the standard output device.

In buddha, we use unsafePerformIO to attach observation hooks to parts of the

program, to build a detailed record of its evaluation history.

2.6 Final remarks

A detailed specification of the static semantics of Haskell is provided in Faxén [2002],

whilst Jones [1999] formalises a large part of the type system as a Haskell program.

A thorough discussion of type systems, especially the Hindley Milner variety (and

extensions), is in Pierce [2002].

Unfortunately the dynamic semantics of Haskell is not fully defined in the Lan-

guage Report, though the omission is probably intended to make the language flex-

ible with respect to evaluation order. An early draft is given in Hammond and Hall
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[1992], but it is somewhat out of date, especially with regards to I/O. However,

many facets of candidate semantics can be found in the literature. Launchbury

[1993] provides a semantics for lazy evaluation which is very helpful for understand-

ing the dynamic behaviour of lazy languages at a fairly high level of abstraction.

Harrison et al. [2002] describe some of the finer points of Haskell’s semantics, par-

ticularly with reference to pattern matching, and cases where Haskell is strict, using

an interpreter for a subset of Haskell, written in Haskell. Various abstract machines

are also described in great detail, including the G Machine [Johnsson, 1984] and

STG Machine [Peyton Jones, 1992], which show how the high-level notions of lazy

evaluation and graph reduction can be mapped onto the low-level aspects of real

computers. Finally, Peyton Jones [1986] gives a very thorough treatment of high-

and low-level semantics of lazy languages, and Plasmeijer and van Eekelen [1993]

discuss graph reduction in detail.

37





Chapter 3
Declarative Debugging

. . . programmers who write debugging systems wrestle with the problem of

providing a proper vantage point.

Reflection and Semantics in Lisp

[Cantwell Smith, 1984]

3.1 Introduction

D
ebugging involves a comparison of the actual and intended behaviours of

a program, with the aim of constructing an explanation for any disparity

between them. For obvious reasons the diagnosis of a bug must be in

terms of the source code, and it is preferable to localise the description of a bug to a

small section of code, to make it easier to fix. To achieve this end, it is necessary for

the debugger to show the behaviour of the program at a suitably fine granularity.

In compiled languages a program may pass through several intermediate states in

its transformation from source code to machine code. Various bits of information

are lost in the transition from one state to the next, such as types, identifier names

and program structure. Part of the process of building a debugger is to undo this

loss of information. That begs the question: what information should be kept, and

furthermore, how should it be presented?
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It is a long established principle that declarative languages, such as Prolog and

Haskell, emphasise the what of programming rather than the how. Or to put it

another way, declarative thinking focuses on describing logical relationships between

elements of a problem rather than a procedure for ordering actions to produce a

solution. One benefit of the declarative view is that it allows for a more abstract

mode of programming, which can often lead to more concise and “obvious” programs.

Another benefit is that the meaning of programs can be described very simply,

without recourse to the complexities of control flow and program state.

A problem with this style of programming is that when an execution of a pro-

gram produces the wrong result for its given arguments it can be very difficult for

the programmer to understand why, especially if they are forced to think in terms of

its operational behaviour. Declarative debugging was proposed by Shapiro [1983]1

to overcome this problem by focusing on the declarative semantics of the program,

rather than its evaluation order. In other words, a suitable vantage point for debug-

ging logical errors in declarative languages is their declarative semantics. Shapiro’s

main contribution was to show that, given a description of the declarative semantics

of a program as a computation tree, it is possible to automate much of the labour

which is normally involved in debugging.

Shapiro’s work was couched in terms of Prolog and logic programming, but

since then it has been transfered to other programming paradigms, such as pro-

cedural languages [Fritzson et al., 1992], object oriented languages [Naish, 1997],

purely functional languages [Naish and Barbour, 1996, Nilsson, 1998, Sparud, 1999],

logic-functional languages [Caballero and Rodŕıguez-Artalejo, 2002], and type error

debugging [Chitil, 2001, Stuckey et al., 2003].

This chapter considers the basic principles of declarative debugging in the context

of Haskell.

1He called it Algorithmic Debugging.
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3.1.1 Outline of this chapter

The rest of this chapter proceeds as follows. In Section 3.2 we discuss debugging

Haskell in very broad terms, providing some background and motivation for the rest

of the chapter. In Section 3.3 we introduce the evaluation dependence tree (EDT),

which resembles a dynamic call graph, and we define a debugging algorithm which

operates on that tree. In Section 3.4 we illustrate the behaviour of the algorithm in

a small debugging example. In Section 3.5 we discuss two different ways of show-

ing higher-order functions, and relate each way to the structure of the EDT. This

leads to a more general concept of evaluation dependency than previous definitions

in the literature. In Section 3.6 we show that named constant declarations can in-

troduce cyclic paths in the EDT, and consider the implications for the debugging

algorithm. In Section 3.7 we discuss some ways which can improve the efficiency of

the debugging algorithm.

3.2 Background

A natural way to decompose computations in functional languages is in terms of

reductions. We assume a single-step reduction relation, called →, which is defined

over pairs of terms, using the rules defined in the program equations, and the se-

mantics of Haskell (i.e. the rules for variable substitution, pattern matching and so

forth). If t1 → t2, then t1 can be reduced to t2, by one reduction step. The normal

soundness condition on → is assumed, namely:

if t1 → t2 then t1 = t2

That is, if one term can be reduced to another, then those terms are equal (have

the same meaning). Of course, if there is a bug in the program, it may be the case

that the equality implied by reduction does not hold in our intended interpretation

of the program.

Suppose that t1 can be reduced to t2 by application of the program rule p. We
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can associate an individual reduction step with the program rule from which it was

derived, using an annotation like so:

t1 −→
p

t2

If t1 is not equal to t2 in the intended interpretation of the program, then p is to

blame for the error.

Not all redexes involve program equations. Some are what we call system re-

dexes, which involve insignificant “internal” evaluations. Examples are case and

let expressions. Conversely, program redexes, are those redexes which arise from

program equations:

• f e1 . . . en, where f is the name of a let-bound function of arity n

• f , where f is the name of a let-bound constant (a pattern binding)

It is reasonable to limit our attention to program redexes, since they represent the

invocation of programmer defined abstractions. System redexes are, by their very

nature, always correct.

To find buggy program rules we could search through all the annotated reduc-

tion steps from a program evaluation, and identify those steps which violate our

expectations about term equality. Of course, for non-trivial program runs, a search

through all the reduction steps in sequential order is unlikely to be feasible because

the number of steps will be prohibitively large.

A much better approach is to employ a multi-step reduction relation, so that we

can consider the correctness of many single steps at one time. We define a multi-step

reduction relation over pairs of terms, called →∗, as the reflexive, transitive closure

of →:

t →∗ t, for all t

if t1 → t2 then t1 →∗ t2

if t1 → t2 and t2 → t3 then t1 →∗ t3
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The benefit of multi-step reductions is that, if t1 →∗ tn, and t1 is equal to tn in

the intended interpretation of the program, there is no need for us to consider the

correctness of any of the individual reduction steps in between t1 and tn (which

could be a large number of steps). It might be the case that one or more of those

steps was incorrect, however, none of those errors can be said to be to blame for any

bugs which are observed for the program run as a whole. If we do find an incorrect

multi-step reduction, we only need to consider the correctness of the single steps in

between the initial and final terms of that reduction. These too can be partitioned

into multi-step reductions, and so on, until we arrive at reductions which require

only one step.

Conventionally, computations are regarded as sequential structures. An impor-

tant idea in declarative debugging is that computations can also be regarded as

trees. The use of a multi-step reduction relation leads naturally to a tree structure,

which we call an evaluation dependency tree (EDT).

In the next section we define the properties of the EDT, and give a recursive

error diagnosis algorithm which automates the search for bugs.

3.3 The EDT and wrong answer diagnosis

3.3.1 Properties of the EDT

An EDT has the following properties:

1. Nodes in the EDT have:

• A multi-step reduction.

• A reference to a program equation.

• Zero or more children nodes.

2. Reductions in the nodes have the form L →∗ R where L and R are different

terms. L is a program redex, and L is reduced as one of the steps from L to

R. The node refers to the program equation whose left-hand-side matches L.
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3. If a node contains a reduction L →∗ R, and that reduction does not involve

any program redexes, then the node has no children. Otherwise, the node has

one or more children. Let L → R0 be the single-step reduction of L. The

children of the node are any set of sub-trees constructed from the reductions:

L1 →∗ R1, . . . , Lk →∗ Rk, such that the following entailment holds:

L = R0, L1 = R1, . . . , Lk = Rk ⊢H L = R

The entailment operator, ⊢H, is specific to the “theory” of Haskell computations

(hence the H annotation). It means that the term equalities on the right-hand-side

can be deduced from the equalities on the left-hand-side, plus any equalities arising

from system redexes. Hence, we avoid the need to mention the system redexes

explicitly.

In addition to the above properties, it is useful to require that the EDT represents

the complete evaluation of some initial program term. The simplest way to do this

is to define a special root node like so: if t0 is the initial program term, and its

final value is tf , then we can require that the EDT contains a node representing the

reduction t0 →∗ tf .

The second property of the EDT ensures that there is exactly one outermost

redex in L which is reduced in the reduction. This tends to simplify the task of

judging the correctness of reductions, and it also means that each node in the EDT

refers to just one program equation. For example, it rules out reductions such as

this:

f (g 3, h 4) →∗ f (5, 6)

If this reduction is incorrect, it could be because ‘g 3 →∗ 5’ is incorrect, or because

‘h 4 →∗ 6’ is incorrect, or because both are incorrect. It is much simpler if the EDT

stores each reduction in a separate node. Doing so does not lose any precision in

the diagnosis.

The above definition of the EDT allows for many different concrete trees for an

initial program term. The reasons are twofold. First, we do not specify the reduc-

tion relation. This is necessary because Haskell does not have a formal operational
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semantics. Indeed, Haskell specifically allows different evaluation strategies. Dif-

ferent evaluation strategies can lead to different reduction steps, which in turn can

lead to different nodes in the EDT. Second, we allow the children of a node to be

organised in different ways. This is because we view the EDT as a proof tree. A

sub-tree containing a reduction L →∗ R is a proof that L = R, according to the

program equations and the semantics of the language. By using entailment to relate

a parent node with its children, we do not prescribe an order in which the steps in

the proof must be made. This means we are free to restructure the EDT, so long

as the entailment is preserved. A small issue with entailment is that it allows a

node to have children which are not actually related to its reduction. We could add

an additional requirement that the entailment is somehow “minimal”. We believe

that this detail is not important because the addition of spurious children does not

change the soundness of the bug diagnosis (providing those children nodes satisfy all

the requirements of normal EDT nodes), and an implementation of the EDT (such

as ours) will avoid the addition of such nodes in practice.

For aesthetic reasons, we employ the symbol ⇒ to indicate the reduction relation

when we show nodes in the EDT. We use => for the same symbol in typewriter font.

3.3.2 Identification of buggy equations

Given an EDT we can say which nodes correspond to buggy equations in the pro-

gram. We adopt the terminology of Naish [1997]. We assume that there is an

intended interpretation of the program which defines the expected meaning of terms

which appear in the EDT. A node containing L ⇒ R is erroneous if (and only if) L
and R do not have the same meaning in the intended interpretation. Conversely, a

node is correct if (and only if) L and R do have the same meaning in the intended

interpretation. There is a third case, which arises when L or R (or both) do not

have any meaning in the intended interpretation, but for simplicity we do not cover

that case here; we will return to this issue in Chapter 4, when the process of judging

nodes for correctness is considered in more detail.
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A node is buggy if it is erroneous but has no erroneous children. A buggy node

refers to an incorrect equation in the program. We can show that this is true by

considering two cases. The first case is when a node has no children. L can be

reduced to R by the application of the program equation whose head matches L
(the equation referred to by the node) and the evaluation of zero or more system

redexes. If the node is erroneous, it must be the equation referred to by the node

which is to blame for the error. The second case is when a node has one or more

children L1 ⇒ R1, . . . , Lk ⇒ Rk, and all the children are correct. Let L → R0 be

the reduction of L by one step. From the definition of the EDT we have:

L = R0, L1 = R1, . . . , Lk = Rk ⊢H L = R

If the right-hand-side of the entailment is erroneous then it must be the case that

one or more of the premises on the left-hand-side is to blame. If all the children

are correct then the only equation to blame for the mistake is the one whose head

matches L, therefore that is a buggy equation.

Declarative debugging is a search through the EDT for buggy nodes. Shortly we

will present a simple algorithm which automates this search.

3.3.3 Example EDTs

Recall the small program introduced in Section 2.3.1:

double x = x + x

start = double (3 * 2)

Figure 3.1 depicts three of the many possible EDTs for the evaluation of start. Each

tree represents a proof that start can be reduced to 12. The difference between

them is the order in which the sub-proofs are structured. The top tree is labeled

“small-step” because each node contains only a single small-step reduction. The

bottom tree is labeled “big-step” because each node contains reductions which show

their results in their final state of evaluation. The middle tree is labeled “multi-

step”, depicting the possibility of reduction steps which are somewhere in between
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(big−step)

6 + 6 => 12

3 * 2 => 6

3 * 2 => 6 6 + 6 => 12double (3 * 2) => 

(3 * 2) + (3 * 2)

start =>

double (3 * 2)

start => 12

double (3 * 2) => 6 + 6 6 + 6 => 12

3 * 2 => 6

start => 12

double 6 => 12

start => 12
(small−step)

(multi−step)

Figure 3.1: Three example EDTs for the same computation, exhibiting various reduction
step sizes in their nodes.
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small and big steps. The small-step tree is shown with an extra “virtual” node at

its root – hence the use of dashed lines – which collects all the individual reduction

steps under a common parent. Without this contrivance the small-step EDT would

not be a tree at all, but simply a collection of nodes.

Whilst the structures of the trees are different, each tree is suitable for declarative

debugging.

3.3.4 Big-step EDTs

In buddha, as in all previous declarative debuggers for functional languages, we

construct a big-step EDT. An EDT is a big-step EDT if, in each node, the sub-terms

in L, and the whole of the result R, are shown in their final state of evaluation. A

term is in its final state of evaluation just prior to the point where it is no longer

needed by the program (i.e. just before it would be garbage collected).

Big-step EDTs have a couple of advantages over the other structural variants:

1. It is (usually) easier to understand a reduction if the components are final

values, rather than arbitrary intermediate expressions.

2. A big-step tree suggests an “order of evaluation” which reflects the static

dependencies between function calls in the source code.

However, different step sizes may have their own benefits in special circumstances,

and we plan to investigate more flexible tree structures in future work.

Each node L ⇒ R in a big-step EDT has the following two properties:

1. Any redexes which appear in L, except L itself, were never evaluated in the

execution of the program.

2. R is not a redex, and any redexes which appear in R were never evaluated in

the execution of the program.

In other words, the sub-terms of L and the whole of R are shown in their final

state of evaluation. Let L → R0 be the single step reduction of L. The two
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Let f x1 . . . xm be a redex for some function f (of arity m) with argu-
ments xi, 1 ≤ i ≤ m. Suppose

f x1 . . . xm ⇒ . . . (g y1 . . . yn) . . .

where g y1 . . . yn is an instance of an application occurring in f ’s body
and furthermore a redex for the function g (of arity n) with arguments yi,
1 ≤ i ≤ n. Should the g redex ever become reduced, then the reduction
of the f redex is direct evaluation dependent on the reduction of the g
redex.

Figure 3.2: Nilsson’s definition of direct evaluation dependency.

properties above imply that the children nodes of L ⇒ R correspond to all and

only those redexes which were created by L → R0, and which were eventually

reduced in the execution of the program. Based on this property, Nilsson [1998,

Chapter 4] defines the relationship between nodes in a big-step EDT according to

the rule for direct evaluation dependence in Figure 3.2. What this means is that

we can determine the dependencies between nodes in the EDT based on a syntactic

property of the program. Indeed, this is one of the reasons why a big-step EDT

is desirable, because it reflects the dependencies of symbols in the source code. A

central part of the program transformation employed by buddha is to encode this

notion of direct evaluation dependency into the program.

We argue for the soundness of this rule in Section 5.8.2.

3.3.5 An interface to the EDT

For the purposes of this chapter an abstract interface to the EDT is sufficient, as

illustrated in Figure 3.3. We consider a concrete implementation in Chapter 5.

The interface provides two operations on EDT nodes:

1. reduction, to extract the reduction from a node.

2. children, to get the children of a node.
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module EDT where

-- name and source coordinates of an identifier
type Identifier = (FileName, IdentStr, Line, Column)

type FileName = String

type IdentStr = String

type Line = Int

type Column = Int

-- note the explicit quantifier in this type
data Value = forall a . V a

data Reduction

= Reduction

{ name :: Identifier

, args :: [Value]

, result :: Value

}

data EDT = ... -- abstract

reduction :: EDT -> Reduction

reduction node = ...

children :: EDT -> [EDT]

children node = ...

Figure 3.3: An abstract interface to the EDT in Haskell.

Each reduction contains three components:

1. The name of the function that was applied.

2. The arguments of the application.

3. The result.

All values stored in the EDT are injected into a universal type called Value, by

way of the constructor function:

V :: a -> Value
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Note that the type of V’s argument is not exposed in its result. This allows the EDT

to store values of arbitrary types. For this we need to use an explicit quantifier in

the definition of V. This kind of quantification is not allowed in Haskell 98, however

it is a widely supported extension. In Chapter 6 we show how to turn Values into

printable strings.

3.3.6 Wrong answer diagnosis

data Judgement = Correct | Erroneous

data Diagnosis = NoBugs | Buggy Reduction

wrongAnswer :: Diagnosis -> [EDT] -> IO Diagnosis

wrongAnswer diagnosis [] = return diagnosis

wrongAnswer diagnosis (node:siblings) = do

let thisReduction = reduction node

judgement <- askOracle thisReduction

case judgement of

Correct -> wrongAnswer diagnosis siblings

Erroneous

-> wrongAnswer (Buggy thisReduction) (children node)

askOracle :: Reduction -> IO Judgement

askOracle reduction = ... -- abstract

-- the top level of the debugger
debug :: IO ()

debug = do

roots <- get the root(s) of the EDT
diagnosis <- wrongAnswer NoBugs roots

case diagnosis of

NoBugs -> output: no bugs found
Buggy reduction -> output: this reduction is buggy

Figure 3.4: The top-down left-to-right wrong answer diagnosis algorithm.

A simple way to find a buggy node is to search the EDT in a top-down, left-

to-right fashion. Figure 3.4 contains Haskell code which implements this kind of

search.

A diagnosis is obtained from the wrongAnswer procedure, which returns either
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NoBugs if no bugs were found, or ‘Buggy r’, where r is the reduction from a buggy

node. wrongAnswer takes two arguments: the current diagnosis, and a list of sibling

nodes. Initially, the current diagnosis is NoBugs, and the list of sibling nodes just

contains the root node(s) of the EDT. If the list of sibling nodes is empty, the current

diagnosis is returned, otherwise the nodes are considered from left to right. If the

head of the list is Erroneous, it could be a buggy node, so a new bug diagnosis is

constructed containing the reduction from the node, and its children are recursively

considered. Otherwise, the tail of the list is recursively considered with the current

diagnosis. Thus the debugger moves down the EDT when it finds an erroneous node,

and left-to-right when it finds a correct node.

Judgement is treated as an abstract process which is performed by an oracle

(via askOracle). The oracle knows the intended meaning of each function defined

in the program. In practice the oracle simply passes reductions on to the user of the

debugger for judgement, but much of its behaviour can be automated. For instance,

the oracle in buddha remembers previous answers given by the user to avoid repeated

questions.

If all the paths in the EDT are finite, and the root node is erroneous, the algo-

rithm will eventually find a buggy node. If the root node of the EDT corresponds

to the first function called in the program (i.e. main), then the diagnosis returns

what Naish [1997] calls a topmost buggy node. Such a node is buggy and all its an-

cestors up until main are erroneous. This is distinct from an arbitrary buggy node

which might be the descendent of a correct node. Only topmost buggy nodes can

be considered as potential causes of externally observable bugs.

There are a couple important points to note about this algorithm:

• There might be multiple buggy nodes in the EDT. The algorithm only finds

one at a time (in particular, it finds the leftmost one).

• The diagnosis of a bug in some child node is not necessarily to blame for the

erroneous result in its parent for two reasons. First, there might be multiple

erroneous children nodes. Second, the parent might be buggy independently
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of its children. Therefore new buggy nodes might appear after the causes of

other buggy nodes have been fixed.

3.3.7 Constructing the EDT

There are two basic approaches to constructing the EDT described in the literature:

1. Modification of the runtime environment to produce it as a side-effect of re-

duction.

2. Source-to-source program transformation which extends a program to compute

the EDT as part of its final value.

In the first approach, a special runtime environment is employed which builds

EDT nodes and links them together as part of the process of graph reduction. A

modified compiler is needed to produce object code which takes advantage of the

additional features of the runtime environment.

In the second approach, the debuggee is transformed into a new Haskell pro-

gram which computes both the value of the debuggee, plus an EDT describing that

computation. The new program is compiled to produce a debugging executable.

We employ the second approach because it simplifies the implementation of the

debugger and enhances its portability. A more detailed discussion of the pros and

cons of each approach appears in Section 8.3.

3.4 An example debugging session

In this section we consider an example debugging session using buddha. Figure 3.5

contains a small program for converting numbers written in base ten notation to

other bases. It reads two numbers from the user: the number to convert, and the

desired base of the output. It prints out the number written in the new base. The

intended algorithm goes as follows:
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1. Prompt the user to enter a number and a base. Read each as a string, and

convert them to integers using the library function read (which assumes its

argument is in base ten).

2. Compute a list of “prefixes” of the number in the desired base. For example,

if the number is 1976, and the base is 10, the prefixes are ‘[1976, 197, 19,

1]’. This is the job of prefixes.

3. For each number in the above list, obtain the last digit in the desired base.

For example if the list is ‘[1976, 197, 19, 1]’, the output should be ‘[6,

7, 9, 1]’. This is the job of lastDigits.

4. Reverse the above list to give the digits in the desired order.

5. Convert each (numerical) digit into a character. Following tradition, numbers

above 9 are mapped to a letter in the alphabet. For example, 10 becomes ’a’,

11 becomes ’b’ and so on. This is the job of toDigit.

The program refers to several functions which are imported from the Haskell

Prelude. Definitions of those functions, and examples of their use can be found

in [Pope, 2001]. The implementation of the Prelude and standard libraries are

trusted to be correct, and assumed to be well understood by Haskell programmers.

Buddha can take advantage of this and avoid mentioning these functions, which tends

to make debugging sessions shorter and simpler. More information about trusted

functions can be found in Section 7.3.

Higher-order functions require special consideration. To highlight this aspect

of debugging we have included a version of map, called mymap, in the definition of

the program. Calls to the Prelude defined map would be trusted by buddha, and

thus would be invisible in the debugging example. There is no way to turn off the

trusting of Prelude functions in the current version of buddha, but this limitation

can be overcome by re-defining the function within the program, where it will no

longer be automatically trusted.
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1 module Main where

main = do putStrLn "Enter a number"

num <- getLine

5 putStrLn "Enter base"

base <- getLine

putStrLn (convert (read base) (read num))

convert :: Int -> Int -> String

10 convert base number

= mymap toDigit

(reverse

(lastDigits base

(prefixes base number)))

15

toDigit :: Int -> Char

toDigit i = ([’0’..’9’] ++ [’a’ .. ’z’]) !! i

prefixes :: Int -> Int -> [Int]

20 prefixes base n

| n <= 0 = []

| otherwise = n : prefixes base (n ‘div‘ base)

lastDigits :: Int -> [Int] -> [Int]

25 lastDigits base xs = mymap (\x -> mod base x) xs

mymap :: (a -> b) -> [a] -> [b]

mymap f [] = []

mymap f (x:xs) = f x : mymap f xs

Figure 3.5: A (buggy) program for converting numbers in base 10 notation to other bases.

There are numerous bugs in the program, which exhibit several faults:

1. The conversion for positive numbers and positive bases is wrong. For example,

converting 1976 to base 10, produces 0aaa as output. The expected output

is, of course, 1976.

2. It terminates, but produces no output when the number to convert is less than

or equal to zero.
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3. It fails with an exception if a conversion requires a digit larger than ’z’.

4. It appears to enter an infinite loop when the base is 1, producing no output.

5. It fails with a “divide by zero” exception if the base is zero.

6. It produces a numeric answer for negative bases, when it probably should

report an error message.

7. It fails with an exception if the input strings cannot be parsed as base ten

numbers.

The rest of this example shows how to use buddha to find the first of the above

bugs.

Debugging with buddha takes place in five steps:

1. Program transformation. To make a debugging executable, the source code of

the original program (the debuggee) is transformed into a new Haskell program.

The transformed code is compiled and linked with a declarative debugging

library, resulting in a program called debug.

2. Program execution. The debug program is executed.

3. Declarative debugging. Once the debuggee has terminated, the user can begin

declarative debugging, which takes the form of a dialogue between the debugger

and the user, following the algorithm in Figure 3.4.

4. Diagnosis. The debugging dialogue continues until either the user terminates

the session or the debugger makes a diagnosis.

5. Retry. For a given set of input values there might be more than one cause of

an erroneous program execution. To find all the causes the user must repeat

the above steps until no more bugs are found (after modifying the source code

to repair each defect).
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Each step is outlined below. Boxed text simulates user interaction on an oper-

ating system terminal. Italicised text indicates user-typed input, the rest is output.

The operating system prompt is indicated like so: ⊲.

Program transformation

Suppose that the program resides in a file called Main.hs. The first thing to do

is transform the program source code (and compile it etcetera). A program called

buddha-trans is provided for this task:

�




�

	

⊲ buddha-trans -t extens Main.hs

buddha-trans 1.2.1: initialising

buddha-trans 1.2.1: transforming: Main.hs

buddha-trans 1.2.1: compiling

Chasing modules from: Main.hs

Compiling Main_B ( ./Main_B.hs, ./Main_B.o )

Compiling Main ( Main.hs, Main.o )

Linking ...

buddha-trans 1.2.1: done

Appendix A contains the Haskell code which results from this step.

Buddha allows higher-order values to be printed in two different styles: the in-

tensional style, which is based on the term representation of the function; and the

extensional style, which shows the function as a finite map (we call this a min-

imal function graph, borrowing the terminology from Jones and Mycroft [1986]).

For the sake of demonstration we use the extensional style in this example; we

tell buddha-trans to use this style by default with the ‘-t extens’ command line

switch. For comparison, Appendix B illustrates an alternative debugging session for

the same program using the intensional style instead. We discuss the ramifications

of each style in more detail in Section 3.5.

For each module X in the program, buddha-trans transforms the code in that

module and stores the result in a file called X_B.hs. To avoid cluttering the working

directory with the new files, buddha-trans does all of its work in a sub-directory

called Buddha, which is created during its initialisation phase. Compilation is done
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by the Glasgow Haskell Compiler (GHC)2.

Program execution

The compilation of the transformed program results in an executable file called

debug. When this program is executed it first behaves like the original program,

then it starts a debugging session.

�

�

�

�
⊲ ./Buddha/debug

In this example, the program prompts for two input numbers, and prints the

result:
�

�

�

�

Enter a number

1976

Enter base

10

0aaa

The debugger begins at the point where the original program would have termi-

nated.
�

�

�

�

Welcome to buddha, version 1.2.1

A declarative debugger for Haskell

Copyright (C) 2004 - 2006 Bernie Pope

http://www.cs.mu.oz.au/~bjpop/buddha

Type h for help, q to quit

Declarative debugging

After the welcome message, we see a reduction for main and a prompt:

�

�

�

�

[0] <Main.hs:3:1> main

result = { 0 -> (8,Right ()) }

buddha:

2www.haskell.org/ghc. At present this is the only compiler that buddha supports.
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The first line indicates that this reduction involves main whose definition begins on

column 1 of line 3 in the file Main.hs. Each reduction is uniquely numbered, and

the number appears within square brackets at the start of the first line. Since main

is the first thing evaluated by the program its reduction is always numbered 0. The

second line shows the result of main, which is an I/O value. We explain the meaning

of this representation in Section 7.2. As we shall see, it is safe to ignore it for the

purposes of this example.

Before we proceed with debugging we might like to see what the top of the EDT

looks like. We can ask for an outline of the top few nodes in the EDT using the

draw command:

�

�

�

�
buddha: draw edt

The output is saved into a file called buddha.dot by default, using the Dot graph

language [Gansner et al., 2002]. The graph can be viewed with a tool such as dotty :3

�

�

�

�⊲ dotty buddha.dot

Figure 3.6 illustrates the output of the draw command for this particular de-

bugging session. Note that nodes in the diagram only show reduction numbers and

identifier names; the arguments and results in reductions are not shown. Figure 3.7

provides a more detailed illustration of the top part of the EDT, where reductions

are shown within the nodes. Dashed lines in the diagram indicate parts of the tree

that have been truncated for brevity.

As already mentioned, buddha does not display nodes for trusted functions. This

explains why there are no nodes in the diagram for Prelude functions.

It is worth pointing out that the numbering of reductions in Figure 3.6 corre-

sponds to the order in which function applications are reduced. Tracing through

the nodes in order reveals an intricate interleaving of reductions, which occurs be-

cause of lazy evaluation. For example, consider the subtrees under lastDigits and

3www.research.att.com/sw/tools/graphviz
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3.4 An example debugging session

[0] main

[1] convert

[2] mymap [3] lastDigits [5] prefixes [14] toDigit [16] toDigit [18] toDigit [20] toDigit

[15] mymap

[17] mymap

[19] mymap

[21] mymap

[4] mymap

[6] mymap

[8] mymap

[10] mymap

[12] mymap

[7] prefixes

[9] prefixes

[11] prefixes

[13] prefixes

Figure 3.6: An example EDT diagram produced by the ‘draw edt’ command.

prefixes. Note how the reductions of mymap in the first subtree and interspersed

with the reductions of prefixes. This kind of “demand driven” evaluation can be

very difficult to follow, which motivates structuring the EDT according to logical

dependencies rather than reduction order.

Now, back to debugging. We are faced with a reduction for main. At this point

we can choose between three basic courses of action:4

1. Judge the correctness of the reduction.

2. Explore the EDT.

3. Quit the debugger.

The first option is ruled out because we do not, as yet, know how to interpret

4Actually, there are many more things the user can do, such as ask for help, print diagrams of
values, change settings in the debugger and so on. However, the three actions mentioned here are
the most fundamental of them all.
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lastDigits 10 [1976, 197, 19, 1]

=> [10, 10, 10, 0]

mymap {0 −> ’0’, 10 −> ’a’, 10 −> ’a’, 10 −> ’a’}

[0, 10, 10, 10]

=> "0aaa"

toDigit 0 => ’0’

toDigit 10 => ’a’

toDigit 10 => ’a’

toDigit 10 => ’a’prefixes 10 1976

=> [1976, 197, 19, 1]

main => IO {0 −> (8, Right ())}

mymap {1 −> 0, 19 −> 10, 197 −> 10, 1976 −> 10}

[1976, 197, 19, 1]

=> [10, 10, 10, 0]

prefixes 10 197

=> [197, 19, 1]

convert 10 1976 => "0aaa"

Figure 3.7: An EDT for the program in Figure 3.5.
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I/O values. There is no point quitting, so we must explore the EDT. We can do this

by jumping from main to some other node. For instance we can jump from main to

one of its children. The children of a node can be viewed with the kids command:

�

�

�

�
buddha: kids

Buddha responds as follows:

�

�

�

�

Children of node 0:

[1] <Main.hs:10:1> convert

arg 1 = 10

arg 2 = 1976

result = [’0’,’a’,’a’,’a’]

There is only one child, which accords with the diagram of the EDT in Figure 3.6.

We can jump to this node like so:

�

�

�

�
buddha: jump 1

Clearly the reduction for convert is wrong, because the output is expected to be

"1976". We can declare this to the debugger judging the reduction to be erroneous:

�

�

�

�
buddha: erroneous

When we make a judgement the debugger automatically chooses which node to

visit next. Since convert is erroneous the debugger moves to the first of its seven

children, which is displayed on the terminal:

�

�

�

�

[2] <Main.hs:28:1> mymap

arg 1 = { 10 -> ’a’, 10 -> ’a’, 10 -> ’a’, 0 -> ’0’ }

arg 2 = [0,10,10,10]

result = [’0’,’a’,’a’,’a’]

The first argument of mymap is a function, which is displayed as a minimal func-

tion graph:

{ app1, app2 ... appn }
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Each ‘appi’ represents an individual element of the function graph, of the form:

‘argument -> result’. It is minimal in the sense that it only shows those instances

of the function that were needed in the execution of the program.

The intended meaning of mymap is the same as the Prelude function map, and

it should be clear, at least intuitively, that this reduction is correct. The user can

declare this using the correct judgement:

�

�

�

�
buddha: correct

Since the first child of convert is correct, the debugger automatically moves on

to the next child, which is an application of lastDigits:

�

�

�

�

[3] <Main.hs:25:1> lastDigits

arg 1 = 10

arg 2 = [1976,197,19,1]

result = [10,10,10,0]

The expected output is [6, 7, 9, 1], so the application is erroneous:

�

�

�

�
buddha: erroneous

Since convert is erroneous the debugger moves to its first (and only) child:

�

�

�

�

[4] <Main.hs:28:1> mymap

arg 1 = { 1976 -> 10, 197 -> 10, 19 -> 10, 1 -> 0 }

arg 2 = [1976,197,19,1]

result = [10,10,10,0]

Careful inspection of this application reveals that it is correct:

�

�

�

�
buddha: correct
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Diagnosis

�

�

�

�

Found a bug:

[3] <Main.hs:25:1> lastDigits

arg 1 = 10

arg 2 = [1976,197,19,1]

result = [10,10,10,0]

The debugger concludes that this application of lastDigits is buggy, because

it is erroneous and its only child is correct.

Here is the definition of lastDigits:

lastDigits base xs = mymap (\x -> mod base x) xs

The error is due to an incorrect use of mod. The intention is to obtain the last digit

of the variable x in some base. However, the arguments to mod are in the wrong

order (an easy mistake to make); it should be ‘\x -> mod x base’.

Retry

Having repaired the code to fix the defect, we may be tempted to dust our hands,

congratulate ourselves, thank buddha and move on to something else. But our cele-

brations may be premature. Buddha only finds one buggy node at a time, however

there may be more lurking in the same tree. A diligent bug finder will re-run the

program on the same inputs that caused the previous bug, to see whether it has been

resolved, or whether there is more debugging to be done. Of course it is prudent

to test programs on a large number and wide variety of inputs as well. If we make

any modifications to the program we will have to run the program transformation

again, otherwise we can skip that step.
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start = map (plus 1) [1,2]

map f [] = []

map f (x:xs) = f x : map f xs

plus x y = x - y

Figure 3.8: A small buggy program with higher-order functions.

3.5 Higher-order functions

Consider the buggy program in Figure 3.8. Obviously plus is incorrectly defined.

In a conventional declarative debugger the first reduction of map would be presented

as follows:

map (plus 1) [1,2] => [0,-1]

Note that the partial application of plus is a function, and it is printed as a Haskell

term. We call this the intensional representation of the function. It is also possible

to print the function using an extensional representation, like so:

map { 1 -> 0, 2 -> -1 } [1,2] => [0,-1]

The debugging example from Section 3.4 used this style for printing functions. It

is worth noting that we could render the extensional function using a Haskell term,

for instance, the argument to map could be printed as:

\ x -> case x of { 1 -> 0; 2 -> -1; y -> plus 1 y }

The last part, ‘y -> plus 1 y’, is redundant, because it represents all the instances

of the function which were not needed in the execution of the program. In Chapter 4

we show that such unneeded parts can be elided. Thus, the set notation is more

succinct.

The way that a function is printed affects how we determine its meaning. In the

first case ‘plus 1’ is understood as the increment function because we (must) read

function names as if they carry their intended meaning. So the first reduction above

is judged to be erroneous. In the second case ‘{ 1 -> 0, 2 -> -1 }’ is just an

anonymous (partial) function which we read at face value. So the second reduction

above is judged to be correct.
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3.5 Higher-order functions

map {1 −> 0, 2 −> −1} [1,2] => [0,−1]

start => [0,−1]

map (plus 1) [1,2] => [0,−1]

map (plus 1) [] => [] 1 − 1 => 0

1 − 2 => −1

start => [0,−1]

map (plus 1) [2] => [−1] plus 1 1 => 0

plus 1 2 => −1

plus 1 => {1 −> 0}

1 − 1 => 0

plus 1 => {2 −> −1}

1 − 2 => −1

map {} [] => []

map {2 −> −1} [2] => [−1]

Figure 3.9: Two EDTs for the same computation, illustrating the different ways that func-
tional values can be displayed.

It follows then that the way functional values are printed affects the shape of the

EDT, otherwise we should get different bug diagnoses for the example program.

Figure 3.9 shows the two different EDTs for the example program resulting

from the different ways functional values can be displayed. The top tree uses the

intensional style, and the bottom tree uses the extensional style. Both are suitable

for debugging.

The intensional representation follows the conventional view that manifest func-

tions (i.e. partial applications and lambda abstractions) are WHNF values. They

do not undergo reduction. So, just like constants, we do not need to record nodes

for them in the EDT. Conversely, under the extensional representation, manifest

functions are treated as if they are redexes. For instance, we pretend that ‘plus 1’

can be “reduced” to ‘{ 1 -> 0, 2 -> -1 }’. In this light, the final representa-
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start => [0,−1]

plus 1 1 => 0 plus 1 2 => −1map {1 −> 0, 2 −> −1} [1,2] => [0,−1]

map {1 −> 0, 2 −> −1} [2] => [−1]

map {1 −> 0, 2 −> −1} [] => []

1 − 1 => 0 1 − 2 => −1

Figure 3.10: An EDT with functions printed in extensional style.

tion of a function is not a term, but a set. We can piece together the “reduction”

of this term by collecting all of its application instances from a sub-tree in the

EDT. For example, we can regard the reduction ‘plus 1 1 => 0’ to be equivalent

to ‘plus 1 => { 1 -> 0 }’. Indeed, the extensional EDT is just a “bigger-step”

variant of the intensional EDT.

It must be pointed out that buddha produces a slightly different EDT to the

bottom one in Figure 3.9 when the extensional style is used. A more accurate

depiction of buddha’s tree is given in Figure 3.10. There are two main differences

between the trees. First, in buddha’s tree, the nodes for plus contain reductions

which have the form ‘plus X Y => Z’. In the earlier tree, those same reductions

have the form ‘plus X => { Y -> Z }’. This is only a minor presentational issue,

and it is straightforward to convert between them. Second, in buddha’s tree, the first

argument in each node for map is always displayed as the set ‘{ 1 -> 0, 2 -> -1 }’.

In the earlier tree, the set only contains those applications of ‘plus 1’ which are

found in the sub-tree underneath the particular node for map. For example, in the

earlier tree we have the reduction:

map { 2 -> -1 } [2] => [-1]

which, in buddha’s tree, is printed as:

map { 1 -> 0, 2 -> -1 } [2] => [-1]
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Buddha’s representation contains more information than necessary. This is because

we modify the representation of functional values so that they record the arguments

and results of their own applications in a private data structure. The one repre-

sentation of a function can be shared at many different application sites, and the

private data structure will bear witness to each of those application instances. When

the data structure is printed, it might contain application instances which are not

strictly relevant to a particular sub-tree of the EDT. However, this does not affect

the outcome of debugging. We discuss this issue in more detail in Chapter 4.

While the extensional view might seem strange at first, the set representation of

the function is analogous to an ordinary lazy data structure. For instance, we could

have written the program like this:

start = map plus_1 [1,2]

map f [] = []

map f (x:xs) = apply f x : map f xs

plus_1 = [(a, 1 - a) | a <- [1..]]

apply ((a,b):rest) x

| a == x = b

| otherwise = apply rest x

That is, we represent the increment function as a list of pairs, and we replace function

application with apply, which just performs a list lookup. Ignoring apply (which

could be considered trusted), the EDT for the code above is essentially the same as

the one in Figure 3.10.

An interesting consequence of the extensional style is that the links between

nodes in the EDT resemble the structure of the code more closely than the inten-

sional style. This is because the extensional style treats partial applications and

lambda abstractions as redexes. Therefore the rule for direct evaluation dependency

is very simple. A function application determines its parent based on where the

function name appears in the source code — even if the name appears as part of a

partial application. For instance, plus is a child start in the above example simply

because plus appears literally in the body of start’s definition. Conversely, plus

is not a child of map, because plus does not appear in the body of map’s definition.
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Compare this to the intensional style which can produce rather subtle dependen-

cies because it relates saturated function applications, and functions can become

saturated in contexts which are far removed from the place where they are first

mentioned. Curiously, the extensional style produces a big-step EDT, but the eval-

uation steps are even bigger in the case of higher-order functions. This is because the

final state of evaluation for functions is further reduced than the corresponding term

representation. Therefore, Nilsson’s rule for evaluation dependency still applies, but

we must adopt an unorthodox definition of redex.

It is not clear that one particular style of printing functions is always superior

to the other. Sometimes the function undergoes many applications, and it can be

quite daunting to see them collected together all at once. At other times the term

representation of a function can grow to be quite large and difficult to understand,

even though that function is applied a small number of times. Buddha allows both

styles to be used, so that the user can choose which is most appropriate for their

particular circumstances. This feature is discussed in more detail in Section 5.6.

3.6 Pattern bindings

Haskell allows named constants to be defined using the same equational notation as

functions, for example:

pi = 3.142

These are called pattern bindings. Pattern bindings which do not refer to any

lambda-bound variables in their body are sometimes called constant applicative

forms (CAFs).5

Pattern bindings with the CAF property are usually compiled in such a way that

their representation is shared by all references to the value, which means that their

body is evaluated at most once. Nested pattern bindings which are not CAFs can

5Technically a CAF is a term which is not a lambda abstraction and which does not contain free
lambda-bound variables.
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also be shared, but only within their local scope. Sharing can have a big impact on

the performance of a program, as noted in Section 2.3.2.

Sharing is also important for declarative debugging because pattern bindings

can be recursive which can lead to cyclic paths in the EDT. This can be a problem

for declarative debugging, because the wrong answer diagnosis algorithm from Fig-

ure 3.4 can enter an infinite loop if there is cyclic path in the EDT and each node

in the path is erroneous. For example, consider this program:

ones = 1 : unos

unos = 2 : ones

Suppose that both ones and unos are supposed to equal the infinite list of ones. If

pattern bindings are shared we will get one node in the EDT for each value, with

a cyclic dependency between them. Suppose the debugger visits the node for ones

first. We get a reduction like so:

ones => 1 : 2 : 1 : 2 : 1 ...

The right-hand-side must be truncated at some point because the list is infinite.

Nonetheless, it is easy to see that it is erroneous. Therefore we move on to unos,

which has this reduction:

unos => 2 : 1 : 2 : 1 : 2 ...

This is also erroneous, which takes us back to ones again, and so on forever. Starting

with unos first also results in an infinite loop.

The bug is in unos, but the debugger cannot decide which of the two equations

is buggy because of the cycle. In buddha we break the cycle at an arbitrary point by

deleting one of the edges in the cyclic path. This means that all paths in the EDT

have finite length, which in turn means that the top-down wrong answer diagnosis

algorithm is guaranteed to terminate. Unfortunately it also means that we can get

the wrong diagnosis in some cases.6 For example, suppose that we delete the edge

6It seems that Nilsson’s debugger Freya also has this problem [Nilsson, 1998, Section 6.1]. Re-
garding this issue he says: “The user has to take the diagnosis of the debugger with a pinch of salt
when debugging mutually recursive CAFs, but we do not think this is a large problem in practice.”
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from ones to unos. If the debugger ever visits ones it will be diagnosed as buggy

because it is erroneous but it has no erroneous children.

A better solution would be for the debugger to report all the nodes in an erro-

neous cycle as potential causes of the bug in the program, and let the user decide

which ones are true bugs. One way to achieve this is to change the definition of

the EDT so that individual nodes can refer to more than one equation. Rather

than have one node per evaluated pattern binding, we could treat a set of mutually

recursive pattern bindings as a single unit, and generate only one node in the EDT

for the whole group. This would eliminate the cyclic dependency from the EDT,

but it would require the user to judge more than one reduction at a time.

3.7 Final remarks

The top-down left-to-right algorithm is to be admired for its simplicity, however it

is not always the best method for identifying buggy nodes.

Sometimes it is preferable to start the diagnosis somewhere deeper in the EDT

than the root node. Buddha provides commands which allow the user to explore

the EDT in addition to debugging. Even though this feature is useful, we must find

our node of interest by navigating to it from main, which can be frustrating when

that node is very deep in the EDT. In Section 9.2.3 we consider a different interface

design for buddha which will allow the user to start debugging from an arbitrary

expression.

An important factor in the effectiveness of the debugger is how many reductions

have to be judged by the user in order for a diagnosis to be made, and also the

relative difficulty of reductions that must be considered. Shapiro [1983] calls this

the query complexity of the debugging algorithm. The worst case behaviour of the

top-down left-to-right algorithm is equal to the number of nodes in the EDT.

A number of more advanced search strategies have been proposed in the literature

to reduce the query complexity of the diagnosis algorithm. Shapiro [1983] proposes

a divide and query approach which is motivated by the classic divide and conquer

71



3.7 Final remarks

algorithm pattern. Each subtree is assigned a weight, which is some measure of the

complexity of debugging the tree. The standard metric is to count the number of

nodes in a subtree. The debugger chooses an initial node which divides the EDT as

closely as possible into two equally weighted parts. If the chosen node is correct, the

entire subtree rooted at that node is pruned from the EDT. If the node is erroneous

the subtree rooted at that node is kept and the rest of the EDT is pruned. New

weights are calculated for all the subtrees that remain after pruning, and the process

repeats until a buggy node is found. The main benefit of the algorithm is that each

judgement from the oracle causes the effective search space to be divided by two in

terms of weight. If the original EDT has weight n, a buggy node will be found with

only O(log n) nodes considered by the oracle.

The implementation of a practical divide-and-query algorithm in the context

of the Mercury logic programming language is discussed by MacLarty, Somogyi,

and Brown [2005]. To save space the Mercury debugger does not always keep the

entire EDT in memory. Instead, only a partial tree is kept and subtrees are pruned

away after a certain depth. Pruned subtrees can be regenerated on demand by re-

executing the computation represented by the reduction in their root node. The

fact that some parts of the tree may be missing makes the computation of weights

more difficult. Therefore the debugger is forced to make an approximation of the

weights of some subtrees. The authors also discuss another search strategy called

sub-term dependency tracking which allows users to mark the sub-parts of values

in a reduction that cause the output to be different than what was expected. The

debugger will then focus on reductions which produce those sub-parts as their result.

This can give a very big improvement in the query complexity of the debugger if

the wrong sub-part is only a small fraction of the overall value in which it appears,

as is often the case, because the debugger is able to skip over the many reductions

that produced the otherwise correct parts of the same value. The idea of sub-term

dependency tracking is based on the earlier work of Pereira [1986] in the context of

Prolog, under the moniker of rational debugging.

72



Declarative Debugging

One big concern is how well declarative debugging scales with respect to the

complexity and size of the program being debugged. The main limiting factor is

the space required by the EDT on top of what is needed to execute the debuggee.

Long running computations undergo many reduction steps, and each reduction step

gives rise to a node in the EDT. On a modern machine, buddha can allocate at least

80,000 nodes per second.7 Furthermore, the reductions in the EDT retain references

to argument and result values which precludes their garbage collection. This means

that the space consumption of a debugged program is proportional to the duration

of its execution, even if the debuggee needed only constant space. Without some

way of reducing the size of the EDT, declarative debugging is limited to only very

short computations. Chapter 7 considers various techniques for keeping the memory

requirements of the EDT within feasible limits.

The class of bugs detectable by declarative debugging is limited by what informa-

tion is expressed in the EDT. This rules out any aspects of the program that are not

visible from the values it computes, limiting the kind of bugs found to those dealing

with the logical consequences of the program. Debugging of performance related

issues, such as space leaks or excessive execution times, is a very important part

of program development and maintenance, however they are not diagnosed by the

declarative debugger, and thus not dealt with in this thesis. Conventional wisdom

suggests that profiling tools are the most suitable debugging aids for these kinds of

problems, and such facilities are available for the main Haskell implementations, see

for example Runciman and Wakeling [1993], Runciman and Rojemo [1996], Samson

and Peyton Jones [1997].

7This is only a very rough figure. The number of nodes allocated per second varies between
applications, because not every reduction takes the same amount of time. Other factors, like
garbage collection, can also greatly influence the rate of node allocation.
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Chapter 4
Judgement

Computers are good at following instructions, but not at reading your mind.

The TEXbook

[Knuth, 1984]

4.1 Introduction

J
udging reductions for correctness can be a difficult task, especially when

the values contained in them are large. In non-strict languages the task

is even harder because not all values are necessarily reduced to normal

forms at the end of program execution. Therefore, the oracle must decide on the

correctness of reductions which contain unevaluated function applications (thunks).

This chapter formalises judgement in the presence of partial values.

Under non-strict semantics it is possible that a function application is made but

never reduced to a normal form. Consider this code:

const x y = x

loop n = loop (n+1)

start = const True (loop 0)

The evaluation of start will eventually produce the value True.
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According to the program, the value of ‘const True (loop 0)’ is independent

of the value of ‘loop 0’. Under lazy evaluation ‘loop 0’ will never be reduced.

In a “less lazy” (but still non-strict) implementation of Haskell, such as optimistic

evaluation, it might be the case that ‘loop 0’ undergoes some finite number of

reductions during the reduction of start. In this context, function applications

that remain at the end of the program execution may have been subject to some

reduction. And some of those reductions could have been erroneous. However, terms

that do not reach weak head normal forms cannot be causes of externally observable

bugs in the program. This is because Haskell’s pattern matching rules can only

distinguish between weak head normal forms. Pattern matching is the only way

to affect which equation of a function is used in a given reduction step. Thus an

expression which is not a weak head normal form cannot influence which reductions

are made in the rest of the program.

In Chapter 3 we showed that the big-step EDT prints argument and results of

reductions in their final state of evaluation. Therefore we might expect to see a

reduction for the application of const printed in this way:

const True (loop 0) => True

If this is correct, then it must be correct independently of the intended meaning of

‘loop 0’. It should be possible to replace ‘loop 0’ with any other expression and

still get the same answer, so the representation of the first argument is irrelevant to

the question of the correctness of the reduction. For this reason buddha replaces all

unevaluated terms with question marks:

const True ? => True

Other declarative debuggers for non-strict languages also show unevaluated terms

with questions marks (or some kind of special symbol), but the issue of judgement

in the presence of these terms has not been given much attention in the literature.
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4.1.1 Outline of this chapter

The rest of the chapter proceeds as follows. In Section 4.2 we introduce the notation

and terminology used in the rest of the chapter. In Section 4.3 we show how partial

values in reductions can be related to the intended interpretation by the use of quan-

tifiers. In Section 4.4 we introduce the notion of inadmissibility to allow for partial

functions in the intended interpretation. In Section 4.5 we consider higher-order

functions, with specific emphasis on the extensional representation. In Section 4.6

we conclude with some final remarks.

4.2 Preliminaries

Ignoring partial values for the moment, the basic process of judgement works as

follows. The oracle is presented with a reduction of the form: L => R, where L and

R are closed Haskell terms. If the intended meanings of both sides are equal then

the reduction is correct, otherwise it is erroneous.1

The intended interpretation is elaborated by a semantic function which maps

closed terms to values in the semantic domain.

V : Closed Term → Value

The semantic domain contains the values that we think the program computes, so

it is necessarily conceptual. Given V, a reduction is judged correct if and only if:

V(L) = V(R)

We assume that objects in the semantic domain can always be compared for equality.

A term is considered closed (in this context) if it does not contain any free

lambda-bound variables. However, let-bound variables are always free in the term.

This does not cause any trouble for deducing the meaning of the enclosing term

1In this chapter we will introduce three new judgement types called inadmissible, don’t know

and defer.
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because all let-bound variables are assumed to have an intended meaning which is

known to the oracle.

4.3 Partial values

We call function applications which remain unevaluated at the end of program exe-

cution residual thunks. Residual thunks have no causal connection with bugs which

are externally observable, therefore it is possible to debug the program without

knowing their value.

Consider the following implementation of natural numbers:

data Nat = Z | S Nat

plus :: Nat -> Nat -> Nat

plus x y = ...

Z represents zero, S is a function that maps any natural to its successor, and plus

is supposed to implement addition.

Suppose that plus is buggy, and that the bug leads to this reduction:

plus (S ?) Z => S (S ?)

Residual thunks have a slightly different connotation depending on which side

of a reduction they appear. Those in L indicate values that were not needed in the

determination of R, whereas those in R indicate values that were not needed to

produce the final result of the program. It is possible to consider the correctness of

a reduction by substituting terms for each residual thunk and comparing the result

with the intended interpretation. No matter how you instantiate L it should always

be possible to find an instantiation for R such that they produce the same value

according to the semantic function. Under this reasoning the reduction for plus is

erroneous because there is a counter example. It is intended that ‘plus (S Z) Z’

should return one, but all instances of ‘S (S ?)’ have value two or more.

In the context of reductions with residual thunks, correct really means that a

computation is a safe approximation of the intended semantics. In other words, the
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result is valid in all the places where it was computed, given how much information

was known about the argument values.

The definition of correctness can be extended to support partial reductions by

the use of quantifiers. Each residual thunk is regarded as a distinct variable which

ranges over the set of closed Haskell terms. Those in L are universally quantified

and those in R are existentially quantified.2 The notation L[α1 . . . αm] represents

any left-hand-side term with variables α1 . . . αm, and similarly R[β1 . . . βn] for the

right-hand-side, with m,n ≥ 0. A reduction is correct if and only if the following

statement is true:

∀ α1 . . . αm ∃ β1 . . . βn : V(L[α1 . . . αm]) = V(R[β1 . . . βn])

where α1 . . . αm β1 . . . βn ∈ Closed Terms

That is to say: for all instances of L there is some instance of R such that the two

instances are equal in the intended interpretation.

It must be emphasised that this statement only describes what it means for

a reduction to be correct; it does not provide a feasible algorithm for checking

correctness. To actually decide whether a reduction is correct it is necessary for the

oracle to find a counter example (and thus show it is erroneous), or prove that the

statement of correctness always holds.

A problem with the above formulation of correctness is that it allows terms which

are not in the intended interpretation, such as ‘plus (S True) Z’. Clearly, any term

which is the result of a substitution should be closed and well typed. This issue is

resolved in the next section.

4.4 Inadmissibility

What should the oracle expect to happen when a function is applied outside of its

intended domain?

2Our use of quantified variables is inspired by Naish and Barbour [1995].
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Consider merge, which takes two sorted lists as inputs and returns a sorted list

which contains all and only the elements from the input lists. It is quite useful to

allow the intended interpretation of merge to be unspecified on unsorted arguments.

This allows the programmer to change the actual implementation of a function

without having to change its intended meaning. A typical implementation of merge

will assume that its arguments are sorted, but it will not check this condition for

efficiency reasons. In a buggy program this precondition might not be satisfied.

Suppose a call to merge occurs in the following context:

f xs ys = merge (g xs) ys

If ‘g xs’ returns an unsorted list then a bug is in at least one of these places:

1. In g, or something called by g, because ‘g xs’ failed to produce a sorted list

when it should have.

2. In f. Perhaps because f should not have called g in this instance, or because

something is missing from f’s body to convert ‘g xs’ to a sorted list.

3. In some function which helped produce xs (maybe f and/or g expects that xs

will have some property which ensures that ‘g xs’ is sorted).

It is undesirable for the oracle to judge merge to be erroneous on unsorted lists

because the fault is elsewhere in the program. In this instance we want the diagnosis

to point to the function that caused the unsorted list to be supplied as an argument.

For these situations buddha offers a third judgement value called inadmissible.

In terms of the final diagnosis, inadmissible has the same effect as correct, but

it has a much different meaning. Correct means that the intended meaning has

been preserved, whereas inadmissible means that the application on the left-hand-

side should never have happened because some expected property of the intended

interpretation has been violated.

Inadmissible can also be used to rule out consideration of unintended terms

when quantifying over residual thunks. This includes ill-typed terms which can be
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viewed as a special case. As an aside, there is a connection between admissibility

and types. If not for Haskell’s type system we would anticipate many more bugs

which are caused by inadmissible function applications. Taking this to an extreme,

it is possible to think of inadmissible applications as type errors, for some sufficiently

powerful notion of types. The “sorted inputs” precondition of merge can be regarded

as a type concept, though one which is not expressible in Haskell.

Buddha provides inadmissible as a judgement value, but it is also possible to work

it into the previous definition of correctness. The idea is to introduce a predicate

admissible which takes a term and returns true if the term is defined in the intended

interpretation, and false otherwise:

∀ α1 . . . αm ∃ β1 . . . βn :

admissible(L[α1 . . . αm]) ⇒ (V(L[α1 . . . αm]) = V(R[β1 . . . βn]))

where α1 . . . αm β1 . . . βn ∈ Closed Terms

That is to say: for all admissible instances of the L there is some instance R such

that the two instances are equal in intended interpretation.

The idea of inadmissible calls comes from Pereira’s work on rational debugging

for logic programming [Pereira, 1986]. However, its application in buddha is more

directly influenced by the three valued declarative debugging scheme of Naish [2000]

(and the corresponding three valued semantics for logic programs [Naish, 2006]),

which shows how inadmissible can be used to diagnose type and mode errors in

Prolog programs. The example of merge on unsorted lists is taken from that paper.

4.5 Higher-order functions

Higher-order functions deserve special mention because buddha can print functional

values in the extensional style. The most immediate effect is that it requires the

domain of V be extended to incorporate this new syntax. A deeper concern is how

this representation of functions should be attributed meaning.
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The extensional style of printing makes functions resemble lookup tables. In

this sense the table is “computed” by evaluating the function at various argument

values. Most functions are only computed on a subset of the points in their domain,

therefore they exhibit the same kind of partiality as lazy data structures. The

analogy with data structures can be quite useful since it allows the oracle to use the

same reasoning tactics that were available in the setting of first-order reductions.

Nonetheless, higher-order code can give rise to some surprising reductions be-

cause bugs can affect the way functional values are applied, which in turn affects

how they are printed and understood. This is illustrated in the next example.

Following on from the theme of functions as data, consider the use of functions

to implement lists. The idea is that a list is just a function from index positions to

values:

type List a = Integer -> Maybe a

Looking up an element is achieved by function application. The Maybe type indicates

that some indices are out of bounds. For this example let us assume that in-bounds

indices are always contiguous, and that the first element of the list is always found

at index zero. An empty list is just a function where every index is out of bounds:

empty :: List a

empty = \x -> Nothing

An empty list can be detected by checking if index zero maps to Nothing:

isEmpty :: List a -> Bool

isEmpty list

= case list 0 of

Nothing -> True

_ -> False

Prefixing an element onto the front of a list is achieved by shifting all indices in the

list along to the right by one step, and re-assigning index zero to the new element:

cons :: a -> List a -> List a

cons val tail

= \ index -> if index == 0

then Just val

else tail (index - 1)
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Haskell’s standard list type can easily be converted to the new List type using a

right fold:

mkList :: [a] -> List a

mkList = foldr cons empty

Finally a small program which constructs a List from "abcd" and prints its length:

main = print (len (mkList "abcd"))

tail :: List a -> List a

tail list = \ index -> list (index - 1)

len :: List a -> Integer

len list

= case isEmpty list of

True -> 0

False -> 1 + len (tail list)

Unfortunately, there is a bug somewhere in the code that causes it to print the

answer 1 instead of 4.

Debugging the program with buddha leads to this reduction:

len { 0 -> Just ’a’, -1 -> Nothing } => 1

At first it is hard to know what to make of len’s argument. It looks like a badly

defined list, especially since it has an entry for an index below zero! To make a

judgement in this case requires clear thinking. It should not be possible to calculate

the length of a list without knowing at which index the last element occurs. However,

in this reduction the end of the list has not been determined. What the reduction

actually says is: all lists which have the character ’a’ as their first element have

length one. This is patently false. Some lists do have this property, but not all lists,

therefore the reduction is erroneous. The fact that the list gave Nothing at index

‘-1’ is a red herring: all well-defined lists have this property.

Upon receiving an erroneous judgement from the oracle, buddha considers len’s

two children nodes in turn:

1. len { 0 -> Nothing } => 0

2. tail { 0 -> Just ’a’, -1 -> Nothing } => { 0 -> Nothing }
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The first child is correct, because its argument is the empty list. However, the second

child is erroneous. It says that all lists which have the character ’a’ as their first

element have a tail which is the empty list. Again, this is not true for all such lists.

Since tail has no children it is diagnosed as a buggy node.

Re-considering the implementation of tail we can see that this is the right

diagnosis. Consider what happens by applying each side to some index value i:

(tail list) i = list (i - 1)

That means each element in the tail of the list is shifted along one position to the left

in the original list. For instance, element at index 0 in the tail is equal to element at

index ‘-1’ in the original, when it ought to be at index 1. Thus the correct definition

of tail is:

tail list = \ index -> list (index + 1)

Re-running the program in buddha with the new definition of tail gives a correct

reduction for the original call to len:

len { 0 -> Just ’a’, 1 -> Just ’b’, 2 -> Just ’c’

, 3 -> Just ’d’, 4 -> Nothing }

=> 4

The rules of quantification follow from regular data structures: universal quan-

tification for L and existential quantification for R. The same applies for residual

thunks which appear as part of an individual entry in the function’s representation.

For instance, this reduction is correct:

len { 0 -> Just ?, 1 -> Just ?, 2 -> Nothing } => 2

because the length of the list is always two, irrespective of what the residual thunks

are instantiated to. However, this reduction is erroneous:

len { 0 -> Just ?, 1 -> ?, 2 -> Nothing } => 2

because index 1 could map to Nothing making the length of the list one.
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4.6 Final remarks

While the use of question marks in reductions allows us to abstract away residual

thunks, it does have its drawbacks. Perhaps the biggest problem is that it forces

the oracle to reason “in the large”. Universal quantification often leads to questions

about infinitely many different instances of a single reduction. Therefore a proof of

correctness is required.

In cases where proofs are difficult to construct, a useful heuristic is to search

for a counter example. If such an example is found then correctness is ruled out

immediately. If a counter example is not found after a reasonable amount of time

then the oracle can try to look elsewhere in the EDT for buggy nodes. Buddha

provides two ways to do this. First, the oracle can issue a don’t know judgement. In

terms of the debugging search, this has the same effect as judging the reduction to be

correct. However, any diagnosis reached after this point is tagged with a reminder

that the correctness of this reduction was not known. Second, the oracle can issue

a defer judgement. This tells the debugger to suspend consideration of the current

reduction, but perhaps come back to it later if need be.

A simple deferral mechanism is employed in buddha where the set of children

nodes is treated as a circular queue. Deferring a node simply places it at the end

of the queue. One of two scenarios will follow. Either an erroneous node is found

amongst the remaining siblings, or all the remaining siblings are either correct or

deferred. In the first case the debugging search enters the subtree rooted at that

node and the deferred nodes are never re-visited. In the second case the first deferred

node will be re-visited when it reaches the front of the queue. Eventually the oracle

must make a judgement about the node’s correctness, or say that they don’t know.

A fairly obvious limitation of this style of deferral is that it only operates over the

children of a given node, which of course makes it useless when there is only one child.

One can imagine more elaborate schemes, such as one that propagates the deferral

back up the EDT, so that alternative erroneous paths can be explored. However,

the need for such schemes is diminished because buddha allows the oracle to jump to
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any other node at any time in debugging. All nodes jumped from are remembered

on a stack, which when popped, allows debugging to resume as if the jump was

never made. In essence the jump mechanism is itself a very flexible mechanism for

deferral.
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Chapter 5
EDT Construction

. . . debugging can be a messy problem, if one creates a messy environment in

which it has to be solved, but it is not inherently so. The theory of

algorithmic debugging suggests that if the programming language is simple

enough, then programs in it can be debugged semi-automatically on the basis

of several simple principles.

Algorithmic Program Debugging

[Shapiro, 1983]

5.1 Introduction

C
hapter 3 established the EDT as the basis for the declarative debugging

algorithm. In this chapter we consider the construction of that tree, by

way of a source-to-source program transformation. The source code of

the input program is transformed into an output program which is suitable for de-

bugging. The output program computes the same answer as the input program, and

it also constructs an EDT. The output program is linked with a library containing

the debugging code and the total package forms the debugger.

The transformation rules presented in this chapter build a complete EDT —

every reduction of a program redex builds a node in the tree. Storing such a tree in
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main memory is infeasible for all but the shortest program runs. Chapter 7 considers

various modifications to make the system more practical.

5.1.1 Outline of this chapter

The rest of this chapter proceeds as follows. Section 5.2 introduces the central ideas

of the transformation, which are illustrated with a small example. Section 5.3 pro-

vides an implementation of the EDT using Haskell types. Section 5.4 shows how

function bindings are transformed. Section 5.5 covers pattern bindings, which re-

quire special treatment to preserve the sharing of their values. Section 5.6 deals with

higher-order functions, in particular the transformation of lambda abstractions, and

partial applications. Section 5.7 formalises the transformation rules over a core

abstract syntax for Haskell. Section 5.8 considers the correctness of the rules. Sec-

tion 5.9 examines the runtime performance of transformed programs. Section 5.10

concludes with pointers to the the next two chapters, which extend the transforma-

tion in various ways.

5.2 The general scheme

Constructing the EDT involves two interrelated tasks:

1. The creation of individual nodes.

2. Linking the nodes together, according to their evaluation dependency.

The EDT is built as a side-effect of program evaluation. Each reduction of

a program redex constructs a new EDT node, which is inserted into a list of its

siblings by destructive update. Access to the list of siblings is provided by a mutable

reference, which is passed to the applied function via a new argument.

5.2.1 An example

The process of constructing the EDT is illustrated in the following example, using

code in Figure 5.1 for computing the area of a circle. Reduction steps are shown
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main = area 4

area r = pi * (square r)

square x = x * x

pi = 3.142

Figure 5.1: A program for computing the area of a circle.

one at a time. Each step is accompanied by a diagram which shows the state of the

EDT and the program graph, just after the reduction has taken place.

Step one: ‘main => area 4’.

area

4

A

main A[] []

Graph

EDT

B

At the top of the diagram is the program graph, and at the bottom is the EDT.

Each node has four components: the name of a function, a list of references to its

arguments, a reference to its result, and a list of its children nodes. Constants such

as main have an empty list of arguments. To simplify the diagram, argument and

result references are marked by alphabetic labels, such as A, though in practice the

references are pointers. Function applications in the graph have an additional argu-

ment, which occurs in the first position. This extra argument is a mutable reference

to the parent of the application (specifically the list of children nodes contained in

the parent node), indicated by a dashed edge. These references encode the direct

evaluation dependency between nodes. For instance, main directly depends on the

evaluation of ‘area 4’.
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Step two: ‘area 4 => pi * (square 4)’.

main A[] [ ]

A

* pi

4
C

D

B

square

area B[ ] A ][

A node for ‘area 4’ is constructed and inserted as the child of main. The body

of area introduces two new saturated function applications, and a reference to the

constant pi. Each of these is passed mutable reference to the list of children in the

node for ‘area 4’. If any of those redexes are reduced, their nodes will be inserted

into the correct place in the EDT.

Step three: ‘pi => 3.142’.

pi [] C []

main A[] [ ]

A

*

4
C

D

B

square

3.142

area B[ ] A ][
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A new node for pi is created, and inserted as the first child of ‘area 4’. There are

no function applications in the body of pi, so there are no references from the graph

to its list of children.

Step four: ‘square 4 => 4 * 4’.

main A[] [ ]

pi [] C []

A

*

C

D

3.142

4
B

*

square [ B

area B[ ] A [ ],

] D []

A new node for ‘square 4’ is created, and inserted as the second child of ‘area 4’.

Step five: ‘4 * 4 => 16’.

4
B

pi [] C []

[ B B ], D [ ]*

main A[] [ ]

area B[ ] A [ ],

square [ B ] D [ ]

A

*

C

D

3.142

16
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A new node for ‘4 * 4’ is created, and inserted as the child of ‘square 4’. Note that

value B has become disconnected from the main graph. In the normal execution of

the program this would allow B to be garbage collected. In the debugging execution

B is retained in the heap because it is referred to by nodes in the EDT.

Step six: ‘3.142 * 16 => 50.272’.

A
50.272 4

B
16
D

3.142
C

square [ B ] D [ ]

main A[] [ ]

area B[ ] A [ , , ]

* [ C D], A

* [ B B ], D

pi [] C []

[]

[]

A new node for ‘3.142 * 16’ is created, and inserted as the child of ‘area 4’. At

this point the evaluation of the original program is complete, and all program values

are in their final state of evaluation. The EDT is built and ready for traversal by

the diagnosis algorithm, starting with the node for main.

5.3 Implementing the EDT

The EDT is implemented using the following type:

data EDT

= EDT

{ nodeName :: Identifier -- function name
, nodeArgs :: [Value] -- argument values
, nodeResult :: Value -- result value
, nodeChildren :: IORef [EDT] -- children nodes
, nodeID :: NodeID -- unique identity
}

Each node contains a function name, a list of argument values, a result value, a list

of children nodes, and a unique identity.
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Recall from Section 3.3 the use of Value as a universal type, which allows each

node to refer to a heterogeneous collection of argument and result types.

IORef provides a mutable reference type, accessible in the IO monad, with the

following interface:

data IORef a = ... -- abstract
newIORef :: a -> IO (IORef a)

modifyIORef :: IORef a -> (a -> a) -> IO ()

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> IO ()

IORefs are not standard, but are supported by all the main Haskell implementations.

Side effecting operations on IORefs are attached to pure computations by the

use of ‘unsafePerformIO :: IO a -> a’. This is our way of attaching a hook onto

the evaluation of redexes.

NodeID is an unsigned integer which encodes the unique identifier of each node.

A fresh supply of identifiers is provided by a global counter:

counter :: IORef NodeID

counter = unsafePerformIO (newIORef 0)

nextCounter :: IO NodeID

nextCounter = do

old <- readIORef counter

writeIORef counter $! (old + 1)

return old

(Strict function application is provided by the $! operator, to keep the counter in

normal form, and thus avoid a space leak).

The root of the EDT is a global variable containing a mutable list of EDT nodes,

which is initially empty:

root :: IORef [EDT]

root = unsafePerformIO (newIORef [])
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5.4 Transforming function bindings

Each function in the program is transformed so that it computes its normal result

and an EDT node, which it inserts into the EDT as a side-effect. To facilitate this,

each let-bound function is given an additional parameter through which it receives

a mutable reference to its list of sibling nodes.

The following example demonstrates the transformation of square from Fig-

ure 5.1. Underlined pieces of code indicate things that have been added or changed.

First, the function needs a new parameter to receive a reference to its siblings:

square :: Context -> Double -> Double

square context x = x * x

The extra parameter is called context, because it represents the calling context of

the function. At present the context is simply a mutable reference to a list of sibling

nodes:

type Context = IORef [EDT]

However, the context can be used to convey more information. In Chapter 7 more

detailed context information, such as the depth of the node, is exploited for the

purpose of reducing the size of the EDT by computing only parts of it on demand.

There is a design decision to be made in regards to the position of the context

parameter. Should it be inserted before or after the existing parameters? In a

curried function this decision is significant because the function can be partially

applied, thus receiving its arguments in different evaluation contexts. This issue is

deferred until Section 5.6 where higher-order functions are dealt with specifically.

Second, a node must be constructed for each call to the function:

square context x = call context (x * x)

This is achieved by wrapping the body with call, which constructs a new EDT

node, adds it onto the front of the list of sibling nodes pointed to by context, and

returns the original value of the body. A full implementation of call appears at the

end of this section.
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Third, the call to square must pass its own context information to each of its

children:

square context x = call context (\i -> (*) i x x)

This is done by transforming the original body into a lambda abstraction. The ab-

straction introduces a new variable, called i, which is supplied as the first argument

to every function application in the body. A new EDT node is allocated by call,

and the appropriate context information is derived from it (a pointer to its list of

children). The transformed body is then applied to the context information, thus

binding it to i, forming the link between the parent node and its potential children.

The fourth and last step is to pass the name of the function and a list of its

arguments to call:

square context x

= call context "square" [V x] (\i -> (*) i x x)

Figure 5.2 contains the code for call which carries out six steps:

1. Allocate a new mutable list of children nodes.

2. Pass a reference to that list into the transformed body of the function, and

save the result.

3. Allocate a new node identifier.

4. Construct a new EDT node.

5. Insert the EDT node into its list of siblings.

6. Return the value saved in step 2.

In step 4 all the components of the EDT node come together. The function’s

name and argument references are given to call as arguments. The result of the

function is obtained in step 2. The list of children nodes is created in step 1, and

is initially empty. It will be updated if and when any function applications in the

body are reduced. The identity of the node is obtained in step 3.
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call :: Context -> Identifier -> [Value] -> (Context -> a) -> a

call context name args body

= unsafePerformIO $ do

children <- newIORef [] -- step 1
let result = body children -- step 2
identity <- nextCounter -- step 3
let node =

EDT -- step 4
{ nodeName = name

, nodeArgs = args

, nodeResult = V result

, nodeChildren = children

, nodeID = identity

}

updateSiblings context node -- step 5
return result -- step 6

updateSiblings :: Context -> EDT -> IO ()

updateSiblings context node

= modifyIORef context (node :)

Figure 5.2: Code for constructing an EDT node.

5.5 Transforming pattern bindings

Transforming pattern bindings with the same rules as function bindings has un-

desirable consequences for sharing. As noted in Section 3.6, multiple references

to pattern-bound values are normally shared (relative to their scope) for efficiency

reasons.1 It is desirable for the transformation to preserve this property.

Applying the basic transformation scheme described above to pi produces this

result:

pi context = call context "pi" [] (\i -> 3.142)

References to pi from distinct contexts will cause it to be re-computed. For some-

thing cheap like pi this is unlikely to be a problem, but it can have severe conse-

quences for pattern bindings which are expensive to compute, and/or those which

1The degree of sharing is not defined by the Language Report, therefore it is difficult to make
statements which apply equally to all Haskell implementations.

96



EDT Construction

are recursively defined.

In Section 2.3.2 an efficient Fibonacci sequence generator was defined using a re-

cursive pattern binding. Transforming fibs as if it were a function binding produces

this definition:

fibs :: Context -> [Integer] -- version 1: no sharing
fibs context

= call context "fibs" []

( \i -> 0 : 1 : zipPlus i (fibs i) (tail i (fibs i)))

Recursive calls are no longer shared, which means computing the nth element of the

output list now has exponential time complexity (assuming the compiler does not

do common sub-expression elimination on ‘fibs i’).

To preserve the sharing of pattern bindings, it is necessary to transform them

differently to function bindings.

One possible solution is to follow the design of Freya [Nilsson, 1998, Section 6.1],

where each pattern binding produces a root EDT node if and when its body is eval-

uated to WHNF. This avoids the need for context arguments, thus the declarations

remain as constants, and sharing is retained.

This approach is quite easy to implement. We introduce a new function called

constantRoot, illustrated in Figure 5.3. It plays a similar role to call, in that it

builds new EDT nodes. However, it inserts its nodes into the root of the EDT,

instead of into some parent node. Therefore, constantRoot does not need to be

given a context argument.

Now, fibs can be transformed in a way that preserves its sharing:

fibs :: [Integer] -- version 2: simulating Freya’s solution
fibs = constantRoot "fibs"

( \i -> 0 : 1 : zipPlus i fibs (tail i fibs) )

Note that the recursive calls to fibs do not receive context arguments. We assume

that the body of fibs is evaluated at most once, and that its result is shared amongst

all its references. If this is true, then constantRoot will also only be called once,

and thus fibs will get only one node in the EDT.
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constantRoot :: Identifier -> (Context -> a) -> a

constantRoot name body

= unsafePerformIO $ do

children <- newIORef []

let result = body children

identity <- nextCounter

let node =

EDT

{ nodeName = name

, nodeArgs = []

, nodeResult = V result

, nodeChildren = children

, nodeID = identity

}

updateSiblings root node

return result

Figure 5.3: A method for constructing EDT nodes for pattern bindings, which simulates
the method used in Freya.

The downside of this approach is that a program with more than one pattern

binding will produce a forest of EDTs. Nilsson proposes that the forest of nodes

be topologically sorted according to the dependencies between all of the top-level

pattern bindings, producing a list of EDTs, which can be debugged one at a time

using the standard algorithm.

Debugging over of forest of EDTs is troublesome for three reasons:2

1. Pattern bindings can be defined in different modules. It is difficult to sort them

in a system which supports separate compilation. Freya solves this problem

within the linker, where global information about a program can be computed.

Nilsson says that this is straightforward in Freya because this kind of order-

ing is already needed to support proper garbage collection of such bindings.

However, the task is much more difficult in a debugger based on program trans-

formation, because compilation and linking are delegated to an independent

Haskell compiler, and are thus outside of the debugger’s control.

2These problems are also mentioned in [Brehm, 2001, Section 4.5].
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2. Pattern bindings can be mutually recursive, therefore there may not be a total

order on their dependencies.

3. The user may need to consider many correct EDTs before reaching an erro-

neous one. However, if there was just one EDT rooted at main, the user will

not need to consider any nodes for pattern bindings which are descendents of

correct nodes.

Hence it is preferable to have a single EDT rooted at the node for main. This

requires two issues to be solved:

1. Nodes for pattern bindings can have multiple parents.

2. The body of a pattern binding should not be evaluated more often than it

would in the normal execution of the program.

In buddha we transform pattern bindings so that (in a sufficiently lazy imple-

mentation of Haskell) the value of the binding and its corresponding EDT node are

computed at most once (within their scope). Subsequent references to the pattern

binding share its result and its node is shared by all of its parents in the EDT. We do

this by transforming pattern bindings into functions. If the original pattern binding

computes some value of type T, the transformed version computes a function of type

‘Context -> T’. The first reference to the pattern binding causes its original value

to be computed, along with an EDT node. The value and the node are bundled

into a function closure, and that closure is then bound to the pattern identifier. The

function inserts the EDT node into its context argument, before returning the origi-

nal value as its result. References to pattern bindings are transformed into function

applications, which apply the pattern identifier to the context that is in scope at

that point.

We define a new function, called constant, which is based on constantRoot, but

is split into three parts, as shown in Figure 5.4. The first part, called valueAndNode,

computes the value of the original pattern binding and an EDT node, and returns

them in a pair. The second part, called ref, takes a value-node pair and a context

99



5.5 Transforming pattern bindings

valueAndNode :: Identifier -> (Context -> a) -> (a, EDT)

valueAndNode name body

= unsafePerformIO $

do children <- newIORef []

let result = body children

identity <- nextCounter

let node = EDT

{ nodeName = name

, nodeArgs = []

, nodeResult = V result

, nodeChildren = children

, nodeID = identity

}

return (result, node)

ref :: (a, EDT) -> Context -> a

ref (val, node) context

= unsafePerformIO $

do updateSiblings context node

return val

constant :: Identifier -> (Context -> a) -> (Context -> a)

constant name body = ref (valueAndNode name body)

Figure 5.4: Code for constructing EDT nodes for pattern bindings.

as arguments and inserts the node into the context before returning the value as

its result. The third part, called constant, joins the first two parts together. In

particular, constant constructs a new function by partially applying ref to the pair

produced by valueAndNode. Under lazy evaluation, all instances of that function

share the same value-node pair, which means that the pair is only computed once.

Here is fibs with the new version of constant:

fibs :: Context -> [Integer] -- version 3: with sharing
fibs = constant "fibs"

( \i -> 0 : 1 : zipPlus i (fibs i) (tail i (fibs i)))

There are two points that deserve special mention. First, note that the body of

fibs remains a constant expression, but it computes a function as its result. Since

it is a constant expression it can be computed once and shared. Yet its value is a
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function, so it is possible to pass it different context arguments, and have its node

inserted under different parents in the EDT. Second, note that references to fibs

become function applications, with i, a context, as their arguments. In this case

it means that the node for fibs will be inserted twice into its own list of children,

making two cycles in the EDT. Such cycles are deleted by buddha as discussed in

Section 3.6.

5.6 Transforming higher-order code

Supporting higher-order functions in the transformation raises two issues which are

considered in this section:

1. How should lambda abstractions be transformed?

2. What is the right context for a function which is partially applied?

5.6.1 Lambda abstractions

Normally it is assumed that the intended meaning of a function is signified by its

name. This assumption breaks down in the case of lambda abstractions because

they are anonymous.

Suppose a program contains this declaration:

g xs = map (\x -> x + 1) xs

If the intended meaning of g is to subtract one from each element in a list of numbers

there is a bug in the code. Is the bug in g, or is it in the lambda abstraction? One

could argue either way. It boils down to how you describe the intended meaning of

the lambda abstraction: it could be as it is written, or it could be as it is supposed

to be written. This can be confusing. For instance, suppose this reduction was

encountered during debugging:

(\x -> x + 1) 2 => 3
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Taking the meaning of the function as it is written (increment), suggests that the

reduction is correct. However, taking the meaning as it is supposed to be written

(decrement), suggests that it is erroneous.

We decided that applications of lambda abstractions should not produce reduc-

tions of their own, for three reasons:

1. Reductions for lambda abstractions are potentially ambiguous.

2. Lambda functions tend to be used for functions of only secondary significance.

3. It is easy for the user to translate lambda abstractions into let-bound ones if

they want a finer precision in the diagnosis.

To simplify the rules of the transformation, lambda abstractions are automati-

cally turned into let-bound functions with unique identifiers. For instance, just prior

to the normal transformation, the definition of gs is re-written to:

g xs = map (let f_uniq x = x + 1 in f_uniq) xs

where f_uniq is a new unique identifier in the program. Of course it would be

confusing for the user to be asked to judge reductions for f_uniq, since it is not part

of the original program. This problem is avoided by making it a trusted function,

which means that when the EDT is traversed, the debugger effectively “steps over” a

call to the function and proceeds directly to its children (Section 7.3 covers trusting

in more detail).

5.6.2 Partial applications

A partially applied multi-parameter function can receive each of its arguments in

disparate evaluation contexts. Which of those many contexts constitutes the proper

parent of the eventual call to the function? That depends on how higher-order

functions are printed, as discussed in Section 3.5. Buddha allows functions to be

printed in two different ways: the intensional and extensional styles. Each style has

an effect on the direct evaluation dependency which determines the links between
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parent nodes and their children. First we consider the extensional style, since that

gives the simplest evaluation dependencies, then the intensional style, and finally a

generalisation that incorporates both.

Extensional printing of functions

For the extensional style, the parent of a partially applied function is obtained in the

context where the function is first mentioned by name. This is easy to implement

because this context is a static property of the program.

Consider the transformation of the following example:

gs xs = map increment xs

map f list

= case list of

[] -> []

(x:xs) -> f x : map f xs

increment x = x + 1

In the body of gs two functions are mentioned by name, map and increment.

The eventual reductions of saturated applications of these functions will form the

children of the node for gs, therefore, each function receives a context argument at

its call site:

gs context xs

= call context "gs" [V xs]

(\i -> map i (increment i) xs)

A consequence of the transformation is that gs will have at most one child for an

application of map, because map is saturated in the body of gs, but gs might have

any number of children corresponding to applications of increment. The actual

number is determined by how many times this particular instance of increment

becomes fully saturated and reduced, which in turn depends on how many elements

are demanded in the list returned by gs.
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Now the transformation of map:

map context f list

= call context "map" [V f, V list]

(\i -> case list of

[] -> []

(x:xs) -> f x : map i f xs)

The application of f does not get a context argument. This is because f is lambda-

bound: whatever function it is bound to dynamically will have its context determined

at the point where it is originally mentioned by name.

One of the main advantages of the extensional style is that it leads to a parent-

child relationship which closely reflects the relationship between symbols in the

source code. In the above example, gs is the parent of calls to map and increment,

precisely because map and increment are mentioned by name in its body. This

simplifies the transformation because there is no need to distinguish between partial

and saturated applications of let-bound functions. In contrast, the intensional style

places nodes in the context where the function is saturated, which can be quite

removed from where the function was first mentioned. Also, the point of saturation

is, in general, a dynamic property of the program.

One of the main disadvantages of the extensional style is that nodes for partially

applied functions form clumps under their parent. Suppose that the list produced

by gs is evaluated to one thousand elements long. This would give gs one thousand

children nodes corresponding to calls to increment (and only one node for the call to

map). In the intensional style, the maximum number of children nodes is bounded by

the number of saturated function applications that appear in the body. For almost

all programs this number is only in the order of tens of nodes.

Intensional printing of functions

For the intensional style, the parent of a call to a function is determined at the

point where the function is saturated. It is not always possible to decide statically

where function applications are saturated. This makes the transformation more
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plus $ 1 => plus 1 (plus 1) $ 2 => 3

plus 1 2 => 3

g 1 2 => 3

Figure 5.5: An EDT with functions printed in intensional style.

complex, because it must encode sufficient information into the program so that,

where necessary, saturated function applications can be recognised dynamically.

Consider this example:

($) :: (a -> b) -> a -> b

f $ x = f x

g :: Int -> Int -> Int

g a b = (plus $ a) $ b

The first equation defines the infix operator called $, which implements function

application. The second, somewhat contrived equation defines some function g,

which implements addition, using plus which is assumed to be a function of type

‘Int -> Int -> Int’.

What is interesting about this example is that plus is applied to its arguments in

two steps, and each step occurs inside an independent call to $. Figure 5.5 illustrates

the EDT that results from evaluating the expression ‘g 1 2’, using the intensional

printing of functional values. Observe that only the right node for $ has a child for

plus, specifically because that represents the context where plus is saturated.

The body of $ contains a function application: ‘f x’. When f is bound to

a function of arity one, the application is saturated, making the node for $ its

parent. Yet, when f is bound to a function of arity two or more, the application is

partial, which means the node for $ is not its parent. This creates a problem for the

transformation. Sometimes context information should flow from the node created

for $ to the function applied in its body, and sometimes not. Which case applies
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depends on how $ is called, in particular the arity of its first argument. The problem

is that functions are (ideally) transformed in a fashion which is independent of their

calling contexts. If not, one function definition in the original program might need to

be mapped to multiple function definitions in the transformed program, to cater for

all the different arities of its arguments. This would complicate the transformation

and it could cause an explosion in the code size of the resulting program. Higher-

order functions, like $, must be transformed in a way which does not depend on the

arities of their functional arguments.

As the example above demonstrates, any binary application of a lambda-bound

function could potentially be a saturation site. Therefore each binary application

is accompanied by a context argument, just in case it is needed. To maintain type

correctness, each let-bound function must be transformed to take an additional

context argument for each of its usual arguments, but it should only keep the last

one, since that represents the point where the function is definitely saturated.

Here are the transformations of $, and g:

($) :: (a -> Context -> b) -> Context -> a -> Context -> b

($) f _ignore x context

= call context "$" [V f, V x] (\i -> f x i)

g :: Int -> Context -> Int -> Context -> Int

g a _ignore b context

= call context "g" [V a, V b]

(\i -> ($) (($) plus i a i) i b i)

Note that in $, the application of f must take a context argument, regardless of the

arity of the function that it is bound to.

A typing problem

Inserting context arguments in between ordinary arguments presents a minor typing

problem. Intuitively, the transformation rule for function types is something like

this:

trans(t1 -> t2) ⇒ trans(t1) -> Context -> trans(t2)
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The problem is that Haskell allows higher-order type application, which means that

not all uses of -> are fully applied.

Here is an example using data types:3

data T a = MkT (a Int Int)

h :: T (->) -> Int -> Int

h (MkT g) x = g x

The type T has a type parameter a with kind ⋆ → ⋆ → ⋆, which means that a must

be bound to a type constructor of arity two. In the type of h, a is bound to ->,

but because this is a partial application of the type constructor, there is no way to

insert the necessary context argument.

One might hope that type synonyms could be used to provide a sort of lambda

abstraction at the type level:

type Fun a b = a -> Context -> b

and thus transform the type of h as follows:

h :: T Fun -> Int -> Int

Unfortunately, the Haskell Report forbids the partial application of type syn-

onyms [Peyton Jones, 2002, Section 4.2.2].

A workaround is to introduce a new data type to “encode” the function arrow:

newtype F a b = MkF (a -> Context -> b)

This introduces a new distinct type, which can be partially applied, thus solving

the original problem. The downside is that it requires the introduction of the MkF

data constructor everywhere a function is created. To help with this, a family of

encoding functions are introduced, of the form:

fun1 :: (a -> Context -> b) -> F a b

fun1 g = MkF g

fun2 :: (a -> Context -> b -> Context -> c) -> F a (F b c)

fun2 g = MkF (\x c -> fun1 (g x c))

...

3The same problem can occur wherever higher-kinded type variables are allowed, for instance in
type constructor class declarations.
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where funn encodes functions of arity n. Also it requires a special function applica-

tion to convert between the “encoded form” and the underlying function:

apply :: F a b -> (a -> Context -> b)

apply (MkF f) = f

Here is the transformation of h without encoded function types, using the inten-

sional style of printing functions:

h :: T (->) -> Context -> Int -> Context -> Int

h y@(T g) _c1 x c2

= call c2 "h" [V y, V x]

(\i -> g x i)

It is ill-typed because the application ‘g x i’ in the body requires that g have type

‘Int -> Context -> Int’. However, because g is an argument of the T constructor,

it must have type ‘Int -> Int’.

Here is the transformation of h with encoded function types, which fixes the

typing problem:

h :: F (T F) (F Int Int)

h = fun2 (\y@(T g) _c1 x c2 ->

call c2 "h" [V y, V x]

(\i -> apply g x i))

Note that all arrow type constructors are transformed into Fs.

The encoding of function types introduces extra clutter into the transformation,

by way of the funn encodings, and the apply decodings. For the moment, the

purpose of F is really just to work around a limitation of Haskell’s type system, and

a good optimising compiler should be able to remove them completely. Having said

that, F plays another more substantial role in the transformation, with regards to

observing printable representations of functional values. That topic is covered in

Chapter 6, specifically in Section 6.5.

Combining the extensional and intensional styles

It is possible to transform the program so that both evaluation dependency rules

for higher-order function applications are supported. Each function takes a context
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argument at the point where it is mentioned by name, and also a context argument

for each of its normal arguments. Only one of the initial context and the final

context is retained. The first context is suitable for the extensional style of printing,

and the final context is suitable for the intentional style. All intermediate ones are

ignored. Currently the user determines which context to use for each function (via

a configuration file or command line argument), but it could also be dynamic. It is

even possible insert the node into both contexts to allow different views of higher-

order code in the same debugging session; the utility of this last option remains an

open research question.

5.7 The transformation rules

In this section the formal transformation rules are defined over a typical core abstract

syntax for Haskell.

5.7.1 Abstract syntax

Figure 5.6 contains the abstract syntax definition of core Haskell, which is divided

into three categories: declarations, expressions and types. Terms appearing in

Typewriter font are literal fragments of code. Subscripts represent multiple dis-

tinct instances of an entity. Ellipses represent variable length sequences.

The main feature missing from the core language is type constructor classes

(including class declarations, instance declarations, and type constraints). Of course

buddha supports these features in practice, but the transformation rules for type

classes are fairly mundane — basically type classes just add more declarations to

the program — so we have left them out. The overall structure of type classes

remains unchanged, and the usual rules of overloading apply. This means that the

constraints in type signatures are left unchanged by the transformation rules.
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Declarations

D ∈ x :: T

| x y1 . . . yn = E (n > 0)

| x = E

| data f a1 . . . an = K1 | . . . | Km (n ≥ 0, m > 0)

K ∈ k a1 . . . an (n ≥ 0)

Expressions

E ∈ x | k | E1 E2

| \y1 . . . yn -> E (n > 0)

| let D1 . . . Dn in E (n > 0)

| case E of A1 . . . An (n > 0)

A ∈ P -> E

P ∈ x | k P1 . . . Pn (n ≥ 0)

Types

T ∈ a | f | T1 T2

Atoms Syntactic Classes

f type constructors D declarations
a type variables K data constructor declarations
x, y term variables E expressions
k data constructors A alternatives

P patterns
T types

Figure 5.6: Abstract syntax for core Haskell.
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D〚 x :: T 〛 ⇒ x :: Context -> T 〚 T 〛 (TySig)

D〚 x y1 . . . yn = E 〛 ⇒
x c0 = funn (\y1 c1 . . . yn cn ->

call c0/n "x" [V y1, . . . , V yn]

(\i -> E〚 E 〛i))

(FunBind)

D〚 x = E 〛 ⇒ x = constant "x" (\i -> E〚 E 〛i) (PatBind)

D〚 data f a1 . . . an = K1 | . . . | Km 〛 ⇒
data f a1 . . . an = K〚 K1 〛 | . . . | K〚 Km 〛

(Data)

K〚 k T1 . . . Tn 〛 ⇒ k T 〚 T1 〛 . . . T 〚 Tm 〛 (ConDecl)

Figure 5.7: Transformation of declarations.

5.7.2 Notation used in the transformation rules

Each rule is named by an uppercase calligraphic letter. Double square brackets

‘〚 〛’ enclose arguments which denote a syntactic entity, such as an expression, or

a declaration, and so on. Most of the transformation rules have just one argument,

but the rules for expressions and alternatives have two, and are written in this style:

E〚 E 〛i. The subscript i is the second argument, and denotes the name of the

variable which contains the current context value. Each equation is also given a

mnemonic name, written to the right in Sans Serif font. Variables are sometimes

annotated with salient attributes: xlet denotes a let-bound variable, xλ denotes a

lambda-bound variable, kn denotes a data constructor with arity n. Two new term

variables are introduced, called c and i; these are always bound to values of type

Context.
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5.7.3 Declarations

Figure 5.7 defines the rules for the transformation of declarations.

TySig transforms type annotations. In the core language type annotations are

only given to let-bound identifiers. Each let-bound entity receives a new first param-

eter, which represents the context where the entity is first mentioned by name. The

original type of the identifier is preceded by ‘Context ->’ to account for this extra

parameter. The original type of the identifier, T , is transformed by T (Figure 5.9),

replacing all occurrences of -> with F.

FunBind transforms function bindings, and is the most complex of all the rules.

It is best described from the inside out. The original body of the function, E,

is wrapped in a lambda abstraction, which binds the context argument i. Each

function in E must be applied to i, so E is transformed by E (Figure 5.8), with i as an

argument. The transformed body is wrapped in an application of call to construct

an EDT node. In addition to the body, call takes three other arguments. The first

argument is the context value, either c0 or cn, depending on whether the function

is printed in the extensional style or the intensional style. The second argument

represents the name of the function encoded as a string. The third argument is a

list of the function’s arguments, encoded in the Value type. For each argument of

the original function, yn, a new context argument, cn, is introduced. The function is

encoded in the F type by wrapping it in a call to funn, where n is its arity. The initial

calling context of the function, c0, is not included in the lambda abstraction passed

to funn, instead it appears as a separate argument bound in the function’s head.

This is because c0 is the only context which is guaranteed to be the same as where

the function is referred to by its let-bound name — simply because it represents the

place where the function is applied to zero arguments. All the remaining contexts

represent places where the function has been applied to at least one argument, which

could be different to c0, and thus must be part of the encoded representation of the

function.

As an aside, the finer details of Haskell’s type system make it desirable to avoid
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transforming function bindings into pattern bindings. The reason is that Haskell’s

type system forbids pattern bindings with overloaded types, unless the binding is

accompanied by an appropriate type annotation. The name for this restriction is the

(dreaded) Monomorphism Restriction [Peyton Jones, 2002, Section 4.5.5]. Function

bindings do not suffer the same restriction. Therefore it is possible that the original

program contains an overloaded function binding without a type annotation. Trans-

forming such a function to a pattern binding would invalidate the Monomorphism

Restriction. This is important in buddha because the transformation is source-to-

source, which means that the output must be a type-correct Haskell program. The

problem could be solved if the types of all let-bindings are known by the transfor-

mation, thus allowing type annotations to be introduced where necessary. Type

checking Haskell, especially with all the popular language extensions in place, is by

no means a trivial matter, and it is an advantage to build the program transforma-

tion without having to check types first.

PatBind transforms pattern bindings, following the scheme from Section 5.5.

Data and ConDecl transform data type declarations and data constructor dec-

larations respectively. The structure of the declarations remains the same, but the

types that they refer to are transformed by T .

5.7.4 Expressions

Figure 5.8 defines the rules for the transformation of expressions and alternatives.

The first five rules, which deal with variables, data constructors, and function ap-

plications are the most important.

ExpVarLam and ExpVarLet transform variables. Lambda-bound variables are un-

changed. Let-bound variables are applied to i, the current context value. ExpConZero

and ExpConN transform data constructors. Constructors of arity zero are constants,

and remain unchanged. Constructors of non-zero arity are functions, and they must

be encoded. Encoding is performed by a family of functions conn, reminiscent of
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E〚 xλ 〛i ⇒ x (ExpVarLam)

E〚 xlet 〛i ⇒ x i (ExpVarLet)

E〚 k0 〛i ⇒ k (ExpConZero)

E〚 kn 〛i ⇒ conn k (ExpConN)

E〚 E1 E2 〛i ⇒ apply E〚 E1 〛i E〚 E2 〛i i (ExpApp)

E〚 let D1 . . . Dn in E 〛i ⇒
let D〚 D1 〛 . . . D〚 Dn 〛 in E〚 e 〛i

(ExpLet)

E〚 case E of A1 . . . An 〛i ⇒
case E〚 E 〛i of A〚 A1 〛i . . . A〚 An 〛i

(ExpCase)

E〚 \y1 . . . yn -> E 〛i ⇒
E〚 let x y1 . . . yn = E in x 〛i

(ExpLambda)

A〚 P -> E 〛i ⇒ P -> E〚 E 〛i (Alt)

Figure 5.8: Transformation of expressions and alternatives.

the funn family, where n is the arity of the constructor:

con1 :: (a -> b) -> F a b

con1 f = MkF (\x _ -> f x)

con2 :: (a -> b -> c) -> F a (F b c)

con2 f = MkF (\x _ -> con1 (f x))

...

The only difference between conn and funn is that applications of data constructors

do not produce EDT nodes, so they simply ignore any context arguments which are

passed to them (hence the underscores in each lambda underneath MkF).

ExpApp transforms function applications, with E1 the function, and E2 the ar-
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T 〚 a 〛 ⇒ a (TypeVar)

T 〚 T1 T2 〛 ⇒ T 〚 T1 〛 T 〚 T2 〛 (TypeApp)

T 〚 -> 〛 ⇒ F (TypeConArrow)

T 〚 f 〛 ⇒ f (f 6= ->) (TypeCon)

Figure 5.9: Transformation of types.

gument. Both E1 and E2 are recursively transformed by E . E〚 E1 〛i is an encoded

function, so it must be decoded by apply, before it can receive its argument. Each

application also receives the current context value i, just in case the application is

saturated (which explains why i is passed everywhere through E). In Section 6.6

we introduce additional rules to optimise the transformation of statically saturated

function applications, eliminating redundant function encodings in cases where the

function is immediately applied.

The remaining rules transform let expressions, lambda expressions, case expres-

sions and alternatives. Lambda expressions are translated into equivalent let form

before transformation, as discussed in Section 5.6.1. The rest are simply boilerplate

traversals of the abstract syntax tree.

5.7.5 Types

Figure 5.9 defines the rules for the transformation of types. The function type

constructor -> is replaced everywhere with F, by TypeConArrow, accommodating

the encoding of functions in FunBind and ExpConN. Otherwise the types remain the

same.
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5.8 Correctness

What does it mean for the transformation to be correct? In broad terms it means

that it does not change the externally observable behaviour of the debuggee in any

significant way (other than increasing its space and time consumption), and that it

causes the debuggee to build an EDT which is suitable for declarative debugging.

We now briefly consider each of these issues in turn.

5.8.1 Semantics

When we talk of the meaning of programs we normally refer to formal semantics.

However, there is no standard definition of Haskell’s semantics, in either of the deno-

tational, or operational styles [Peyton Jones et al., 2006]. Whilst this is unfortunate,

it is not without reason:

• A complete denotational semantics must capture the meaning of entire Haskell

programs, which requires a proper treatment of I/O, and thus interactive pro-

grams. So far this goal has been out of reach.

• The operational semantics of Haskell is left open to allow for some flexibility

in the underlying implementation.

Even if we were to create our own semantics for the core language in Figure 5.6,

we would face difficulty because:

• Our transformation makes extensive use of unsafePerformIO, which is partic-

ularly difficult to model without recourse to a specific evaluation order. Thus,

a simple denotational semantics will not be sufficient.

• We would like to show that our transformation works correctly on top of

any Haskell implementation, which could not be done by choosing a specific

operational semantics. Also, we are unlikely to be able to prove that any

particular compiler supports our semantics precisely.
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For these reasons we believe a less formal argument is necessary, and more econom-

ical.

In general, the transformation preserves the meaning of the original program

because:

1. Reduction steps are annotated by side-effecting operations which construct the

EDT as an external data structure, however that structure is not depended

upon by any value computed by the rest of the program. We can erase the

construction of the EDT without changing the meaning of the transformed

program.

2. Outside the construction of the EDT, the only change that the transforma-

tion makes to the program is to add extra parameters to functions which are

matched by supplying extra (context) arguments to function applications. The

values of the context arguments are not scrutinised outside of the code which

constructs the EDT node. Otherwise the control flow of the program remains

exactly the same as before.

Consider the transformation of function declarations (FunBind). The call to

funn provides a compile time type tag on functions, but it serves no important

task at runtime, so it can safely be inlined and eliminated, giving us a simplified

transformation rule:

D〚 x y1 . . . yn = E 〛 ⇒

x c0 = \y1 c1 . . . yn cn -> call c0/n "x" [V y1, . . . , V yn]

(\i -> E〚 E 〛i))
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A minor improvement is to shift all the argument patterns to the left-hand-side of

the equation:

D〚 x y1 . . . yn = E 〛 ⇒

x c0 y1 c1 . . . yn cn = call c0/n "x" [V y1, . . . , V yn]

(\i -> E〚 E 〛i))

We are only interested in the behaviour of the debuggee, and not the value of the

EDT, so we can eliminate all the parts of call that deal with the EDT in any detail.

To begin with we can remove its first three arguments:

D〚 x y1 . . . yn = E 〛 ⇒ x c0 y1 c1 . . . yn cn = call (\i -> E〚 E 〛i))

The representation of Context values is irrelevant outside of call, so we can model

them as constants:

data Context = K

This allows us to treat call as if it were a pure function:

call :: (Context -> a) -> a

call body = body K

Now we can eliminate call altogether by inlining the above definition:

D〚 x y1 . . . yn = E 〛 ⇒ x c0 y1 c1 . . . yn cn = E〚 E 〛K

To emphasise that the value of the additional context arguments are now irrelevant,

we can replace them with “wildcard” patterns:

D〚 x y1 . . . yn = E 〛 ⇒ x _ y1 _ . . . yn _ = E〚 E 〛K

We can perform a similar kind of reduction to the rule for pattern bindings (PatBind),

which simplifies to:

D〚 x = E 〛 ⇒ x _ = E〚 E 〛K
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Now it is just a question of what the transformation does to expressions. We

observe that the context argument is only used in two places: ExpVarLet and ExpApp.

ExpVarLet says that every let-bound variable receives a context value as its first

argument. Looking at the above simplified rules for function and pattern bindings we

can see that all let-bindings have at least one argument, and that first argument does

not affect the result of the definition. ExpApp says that every function application

receives a context value as its second argument. We can eliminate the use of apply

since at runtime it is equivalent to the identity function. We observe that every

function receives an extra argument for each of its normal arguments, and those

extra arguments do not affect the result of the function (non-nullary constructors

get extra arguments, by way of conn, which can be inlined in a similar fashion to

funn). The remaining rules just propagate the context arguments throughout the

expression, but otherwise the structure of the expression remains the same.

In summary, if we ignore the side-effects which are used to construct the EDT,

the program transformation simply adds extra redundant parameters to functions,

and extra constant arguments to function applications. The two changes effectively

cancel each other out, and so the meaning of the program is not changed in any

significant way.

5.8.2 EDT correctness

The debugger is correct if it is sound and complete. In general terms, soundness

means that every diagnosis returned by the debugger identifies a truly buggy equa-

tion in the program (in terms of the oracle’s intended interpretation), and complete-

ness means that if we have a program execution which exhibits a bug symptom,

then the debugger will return a diagnosis of some bug. (Note we only return one

bug at a time).

There are three key ingredients that determine the diagnosis of the debugger: the

wrong answer diagnosis algorithm, the intended interpretation of the oracle, and the

EDT. We do not get to choose the intended interpretation; it is simply a parameter
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of the wrong answer diagnosis algorithm. Therefore, the correctness criteria must

hold for all possible intended interpretations. It is trivial to show that, given an

EDT in which all paths are finite, the wrong answer diagnosis algorithm will return

some diagnosis in a finite number of steps (it could either find a buggy node, or

not find any bugs). The question as to whether it is a correct diagnosis is therefore

determined by the relationship between the EDT and the program execution from

which it is derived. So soundness and completeness can be cast in terms of the

structure and content of the EDT.

EDT soundness

The EDT is sound if every sub-tree constitutes a valid proof of the reduction in its

root node. If this holds then the wrong answer diagnosis algorithm always identi-

fies buggy equations, following from the argument presented in Section 3.3.2. We

build a big-step EDT according to Nilsson’s rule for direct evaluation dependency

in Figure 3.2. Therefore, we must show that this rule is sound.

Consider the general form of a function declaration: f x1 . . . xn = e. Given some

argument terms a1 . . . an, a single step reduction of the application f a1 . . . an

produces the term e[a1/x1 . . . an/xn]. That is, we get an instantiation of the

body of the function, e, such that each of the parameters of f are replaced by their

corresponding argument terms. We construct a node in the EDT for the reduction

of this application like so:

f a1⇓ . . . an⇓ ⇒ (e[a1/x1 . . . an/xn])⇓

where ⇓ returns the most evaluated representation of a value in a given program run.

We observe that, because Haskell is purely functional, it does not matter whether

we evaluate the argument terms before or after we evaluate the body of the function:

e[a1/x1 . . . an/xn] = e[a1⇓/x1 . . . an⇓/xn]
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There is no risk of non-termination because we assume that the whole program run

is terminating, so the final state of all intermediate terms will also be terminating.

Let L1 ⇒ R1 . . . Lk ⇒ Rk be the reductions in the children nodes. The EDT

node is sound if:

L1 = R1, . . . ,Lk = Rk ⊢H e[a1⇓/x1 . . . an⇓/xn] = (e[a1⇓/x1 . . . an⇓/xn])⇓

In other words, we must be able to show that the initial and final instances of the

function body are equal, using only the equalities derived from the reductions in the

children nodes, plus any number of reductions of system redexes.

Soundness is established (informally) as follows. We assume a complete record of

the reduction history from some initial start term t0. A needed redex is any instance

of a redex which was eventually reduced in the evaluation of t0. We allow “instances

of a redexes” because we are intentionally reordering the evaluation of terms. The

arguments of a needed redex may be in different states of evaluation than when the

reduction originally took place. An innermost needed redex is a needed redex which

does not contain any other needed redexes in its sub-terms. Let us use the names

einit for e[a1⇓/x1 . . . an⇓/xn], and efinal for (e[a1⇓/x1 . . . an⇓/xn])⇓. We can show

that einit can be reduced to efinal using some finite number of small-step reductions

of system redexes and some finite number of big-step reductions for program redexes.

The general idea is to repeatedly reduce innermost needed redexes until there

are none left. If a term has no innermost needed redexes, it is in its most evaluated

state.4 We start with einit, and select an innermost needed redex (there may be

zero, one, or more). If there are no innermost needed redexes, then einit is in its

final state of evaluation, and soundness is trivial. If there is an innermost needed

redex in einit, it could either be a system redex or a program redex. If an innermost

needed redex is a system redex, then we can reduce it by one step, and update

einit correspondingly. The evaluation of a system redex by one step is trusted to

4If there are no innermost needed redexes, then there can be no outer needed redexes, thus there
are no needed redexes at all.
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be correct. We do not construct any children nodes for such cases. If an innermost

needed redex is a program redex, then we can reduce it to its final state of evaluation

by a big-step reduction, and update einit correspondingly. If this innermost needed

redex corresponds to an instance of a function application appearing in einit, then,

following the rule for direct evaluation dependency, we construct a child node for

this reduction. By definition, the argument terms of innermost needed redexes are in

their final state of evaluation (they would not be innermost otherwise). Therefore,

the argument and result terms in the new child node have the required big-step

property. We can build the sub-tree for this child by applying the same technique

recursively. After reducing the selected innermost needed redex, we obtain a new,

more evaluated, instance of einit. We select an innermost needed redex from the new

term and continue until we arrive at a term which has no innermost needed redexes.

If the evaluation of t0 is terminating, there must be only finitely many times we can

apply this process.

If einit is an instance of the body of some function f , then the only innermost

needed redexes in einit must be instances of function applications which appear in the

body of f . This is because all the parameters of f are replaced by terms in their most

evaluated state, therefore the argument terms do not contain any innermost needed

redexes. The reduction steps that we apply repeatedly to einit and its successors

do not introduce any new applications into the resulting term which later become

innermost needed redexes. Therefore, we can reduce einit to efinal using the process

outlined above, and the only innermost needed redexes that we encounter along the

way are those which are instances of applications appearing in the body of f . Those

are precisely the reductions for which we construct children nodes. This means that

the reductions in the children nodes, plus zero or more reductions of system redexes,

are sufficient to show that einit can be reduced to efinal.

The extensional style of printing functions requires us to adopt an unorthodox

definition of redex, as noted in Section 3.5. Nonetheless, the soundness argument

remains the same. Recall the example buggy program in Figure 3.8. We regard the
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partial application ‘plus 1’ as a redex, which is reduced to ‘{ 1 -> 0, 2 -> -1 }’.

At some point we will have a node in the EDT corresponding to this reduction:

map { 1 -> 0, 2 -> -1 } [1,2] => [0,-1]

Reducing the left-hand-side of the reduction by one step using the definition of map

gives:

{ 1 -> 0, 2 -> -1 } 1 : map { 1 -> 0, 2 -> -1 } [2]

There are two innermost needed redexes in this term. The leftmost one corresponds

to the application of an “extensional” function to an argument:

{ 1 -> 0, 2 -> -1 } 1

Whilst this is not a function application in the traditional Haskell sense, it is nonethe-

less obvious that it “reduces” to 0. Since this reduction does not involve any let-

bound function names, it is not a program redex, so we treat it as a new type of

system redex, which is always correct. Hence, there is no need to create a child

node for it. The rightmost innermost needed redex corresponds to the recursive

application of map, which is a program redex, so it does generate a child node, as

usual. A big-step reduction of this redex produces [-1]. Combining the single-step

reduction of the system redex and the big-step reduction of the program redex, we

can show that the left-hand-side term can be reduced to the right-hand-side term.

EDT completeness

The EDT is complete if and only if the following two conditions are met:

1. An externally observable bug symptom implies that the root node is erroneous.

2. All paths in the EDT are finite.

The top node of the EDT corresponds to the evaluation of main, which is the

entry point of every Haskell program. The value of main is, in effect, the value of the

whole program. If there is a bug in the program it will be observable in the value

that main reduces to. In practice this issue is complicated by the fact that Haskell
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programs can have side-effects. The value returned by main has type IO, which is

an abstract data type. Therefore, printing the value of main is more difficult than

an ordinary concrete data type. This is a long-standing problem for declarative

debuggers for purely functional languages. We provide a solution in Section 7.2.1,

which allows the side-effects associated with IO values to be printed in a convenient

manner.

The only place where cyclic dependencies can arise in the EDT is between mu-

tually recursive pattern bindings. Following the discussion in Section 3.6, we break

those cycles by arbitrarily deleting one of the edges in a loop. Therefore, all paths

in the EDT are finite. As we noted in that section, this can result in an unsound di-

agnosis. Such cycles are rare in practice, nonetheless the problem can be avoided by

allowing the diagnosis returned by the debugger to contain more than one reduction.

That is, we effectively judge the correctness of all reductions in a mutually recursive

set of pattern bindings together. We avoid the cycle by merging the nodes together.

Thus, we trade precision in the diagnosis for soundness. We plan to incorporate this

solution in future versions of buddha.

5.9 Performance

Transformed programs will always run slower and use more space than their original

versions. But by how much? Space usage is the proverbial Achilles’ Heel of declar-

ative debugging. EDT nodes store references to the intermediate values computed

by the program. Building the whole tree means keeping all its intermediate values,

thus rendering garbage collection ineffectual. The space complexity of a debugger

which materialises the whole EDT at once is proportional to the running time of the

debuggee. In practice, for most programs, the debugger would run out of memory

in a matter of seconds on a typical desktop computer. High space consumption

can also have an adverse affect on runtime performance. For instance, greater heap

retention of data can increase garbage collection times, because more memory must
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be traversed at each collection.5 In the worst case, if the space requirements ex-

ceed the real memory of the computer, the debugger is likely to induce thrashing

in the virtual memory subsystem, which can lead to several orders of magnitude

degradation in runtime performance.

It is interesting to investigate how much overhead the transformation introduces

besides the EDT itself. In order to gauge this cost, the definitions of call and

constant were modified to build an empty EDT. Nodes were constructed for each

reduction, but not inserted into their parents, thus allowing them to be garbage

collected immediately. Five moderately complex programs were transformed and

executed, and measurements were taken to see the effect on space and time. The

following programs were tested:

• Raytrace: a simple grey-scale ray-tracer, applied to a scene containing seven

spheres and two light sources. The output image size is 250 × 250 pixels.

• Prolog: Mark Jones’ Prolog interpreter, applied to a query which reverses a

list of 360 numbers.

• Pancito: version one of Andrew Cooke’s image generation program6, producing

a colour image of 50 × 50 pixels.

• Mate: Colin Runciman’s solver for chess end-games, applied to the Wurzburg

input case.

• Cacheprof: Julian Seward’s cache profiling tool, applied to a 13708 line assem-

bly program.

Prolog, Mate and Cacheprof are part of the Nofib benchmark suite [Partain, 1993],

which is distributed with GHC.

All testing was performed on a Intel Pentium 4 CPU clocked at 1.60 GHz, using

the Linux operating system with kernel version 2.6.3. GHC version 6.2.1 was used

5A generational garbage collector can reduce this cost, by traversing long-lived data less fre-
quently then newly constructed data.

6http://www.acooke.org/jara/pancito
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program nodes growth (trans / orig)
(million) compile time max. mem run time

Raytrace 156.6 2.1 1.5 10.0
Prolog 29.3 2.8 1.5 4.0
Pancito 62.9 2.5 2.3 13.7
Mate 10.9 2.4 3.5 12.1
Cacheprof 73.8 2.1 1.6 22.5

average 2.4 2.1 12.46

Figure 5.10: Relative performance of the transformed program compared to the original,
when an empty EDT is constructed.

to compile the programs with optimisation turned on.7

The results of the tests are shown in Figure 5.10. The first column lists the name

of the program. The second column lists the number of EDT nodes (in millions) that

would be allocated by the debugger, had the whole tree been kept. The remaining

columns list the ratio of the transformed program over the original program in

terms of compile time, maximum memory usage, and run time. All functions in

the program were transformed by the rules shown in this chapter, including all the

functions in the standard libraries.

An obvious question is how much overhead is acceptable? Absolute figures are

hard to estimate without extensive user testing. Nonetheless, there are a couple of

observations that can be drawn from the data.

First, compile time and maximum memory usage are both very close to a factor

of two larger than the original. This is probably because every function application

is doubled in size, including applications of data constructors. More importantly, the

data suggests that the transformation (without the EDT) preserves the asymptotic

space complexity of the debuggee — it introduces no space leaks into the program.

This means that the biggest wins in optimising the space behaviour of the debugger

will be had by reducing the size of the EDT.

Second, the increase in run time is about a factor of 12. Since the test cases

produce empty EDTs this figure does not provide a good measure of how long the

7The testing discussed in later chapters is based on the same setup.

126



EDT Construction

debugger is likely to take. However, it does indicate that there is a fairly high

cost to be paid by the transformation, irrespective of the EDT. Profiling each of

the test programs reveals that the computation time is dominated — as one would

expect — by call and constant (about 30 percent). This suggests that the time

complexity of the debugger can be improved by reducing the number of calls to call

and constant, and also by reducing the work done on average in each call.

In Section 7.4 we return to the issue of runtime performance, and we show how

the space usage of the EDT can be reduced; we use the same test programs in that

section as the ones we have used here.

5.10 Final remarks

This chapter has shown how the EDT can be constructed by program transforma-

tion. However, the story does not end here. In Chapter 6 the rules of the trans-

formation are extended slightly to allow printable representations of values to be

observed. And Chapter 7 extends the transformation rules even further to improve

the time and space complexity of the debugger.

127





Chapter 6
Observing Values

The problem is that it can become very hard to find the small residue of bugs

that get past the type checker, because the usual debugging tools (shoving

print statements into the program, watching the sequence of events in an

animated window, etc.) run into trouble with the restrictions imposed by

pure functional languages.

www.dcs.gla.ac.uk/∼jtod/research

John O’Donnell

6.1 Introduction

D
ebuggers are used to “look inside” programs whilst they are under

evaluation, providing a window on their otherwise hidden mechanics.

Central to this is the illustration of intermediate values that are gener-

ated as the program executes. The values of interest in buddha are the arguments

and results of function applications. The challenge is to find a way to communi-

cate these values to the oracle in a manner that is compatible with its intended

interpretation of the program. In essence, a representation is needed into which all

values can be mapped, and from which a suitable printed form can be rendered. The

process of mapping a value into a suitable representation is called an observation of
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that value.

Non-strict semantics, pervasive higher-order programming, and strong static

type all make observation in Haskell difficult.

Observing values from a running computation is one instance of the more general

field of reflection. Some languages, such as Lisp and Prolog, excel in this area,

because reflection is an integral part of their design. Haskell does not follow this

tradition. The focus of this chapter is how to work around this limitation.

6.1.1 Outline of this chapter

The rest of this chapter proceeds as follows. Section 6.2 considers the key require-

ments of observation, which are used to guide us through the design space. Sec-

tion 6.3 briefly investigates implementing observation entirely in Haskell, concluding

that the language is not quite expressive enough for the task. The solution employed

in buddha is to add a new observation primitive to the runtime environment, via the

Foreign Function Interface. Section 6.4 covers this idea in detail. Section 6.5 looks

at printing functional values in both the intensional and extensional styles. Sec-

tion 6.6 defines an optimisation of the transformation rules from Chapter 5, which

reduces the cost of the transformation for statically saturated function applications.

Section 6.7 considers the problems of displaying large values and points to some

potential solutions.

6.2 The requirements of observation

An observation must be:

• Universal: it must be able to derive a suitable representation for any value

from any program.

• Objective: it must not inadvertently alter the state of evaluation of any

observable part of the program being debugged.

• Final: it must observe the value in its most evaluated form.
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Universality ensures that the debugger can support all Haskell programs.

Objectivity means that one observation does not change the outcome of any

future observations, nor change the state of the value under inspection. It is generally

unsafe to use a non-objective observation because any further evaluation of the

program being debugged might trigger a divergent computation.

Finality is required by a big-step EDT, as noted in Section 3.3. It is not easy to

predict when each value will reach its final state. The standard approach — which

we follow — is to delay all observations until the debuggee has terminated. This

means that intermediate values, that would normally be garbage collected, must be

retained in the heap. This is done implicitly by the construction of the EDT.

6.3 A Haskell implementation

Writing the debugger in Haskell enhances its portability. This section considers

whether Haskell is sufficiently expressive to implement an observation mechanism

which satisfies the three requirements outlined above.

A universal observation facility must accept any type of value as its argument

and map it into an appropriate representation:

data Rep = ... -- representation of Haskell values
observe :: a -> Rep

Unfortunately, Haskell’s type system prevents us from writing a useful observe

with the above type scheme. An implementation of observe must inspect (and

deconstruct) its argument to produce an accurate representation. The only way to

inspect a value in Haskell is to pattern match against it, but this would constrain

observe’s argument to a single monomorphic type.

Dynamic types provide a solution to this problem with a construct called type-

case, which allows the type of a (possibly polymorphic) expression to be scrutinised

at runtime. With this facility a program can dispatch to a type-specific observation

method. There has been much interest in providing dynamic typing capabilities

in otherwise statically typed languages, see for example [Leroy and Mauny, 1993,
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data Rep

= Ident String

| App Rep Rep

class Observable a where

observe :: a -> Rep

instance Observable Bool where

observe True = Ident "True"

observe False = Ident "False"

instance Observable a => Observable [a] where

observe [] = Ident "[]"

observe (x:xs)

= App (App (Ident ":") $ observe x) $ observe xs

Figure 6.1: A type class for generic observation.

Abadi et al., 1995, Bentley Dornan, 1998, Pil, 1998]. Haskell does not have type-

case, but the feature can be simulated to some extent with type classes. The idea

is to constrain the argument of observe to a class, say Observable, such that each

instance of the class provides a type specific observation method:

observe :: Observable a => a -> Rep

Then it is simply a matter of providing instances of Observable for each type in

the program.

Figure 6.1 provides a very simple version of Rep and shows what the class might

look like, including example instances for booleans and lists. A similar approach is

proposed by Sparud [1999].

The main limitation of type classes, when compared with typecase, is that only

values of monomorphic type can be observed. In buddha this means that polymorphic

expressions can become ambiguous after transformation. The following example

illustrates the problem:

let id x = x in id []

In the hypothetical transformed version of id we would apply observe to x to obtain

its printable representation. This would give rise to a type class constraint like so:
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id :: Observable a => ...

The application ‘id []’ gives rise to the constraint ‘Observable [a]’, but this can-

not be satisfied, since a is a type variable, not a concrete type. A possible solution

would be to coerce all unresolved instances of Observable to some default concrete

type such as the unit type, akin to Haskell’s defaulting rules for unresolved numeric

overloading. To do this, one would need to either perform type analysis of the

transformed program, or extend the defaulting mechanism of the Haskell compiler.

There are two other problems with writing observe in Haskell, though they are

not specifically related to the use of type classes:

1. There is no way to determine if something is a thunk.

2. Function values cannot be observed.

The first problem occurs because it is impossible to determine the state of eval-

uation of an expression from within Haskell. Pattern matching is the only tool

that Haskell provides for decomposing values, but it prohibits objective observation

because it forces the evaluation of the object being scrutinised.

The second problem occurs because functions are abstract values. Unlike alge-

braic data types, functions cannot be decomposed by pattern matching.

6.4 An observation primitive

Adding observe as a primitive function in GHC is relatively simple, at least for non-

functional values, because the Foreign Function Interface (FFI) makes it possible

to call C from Haskell, and the GHC runtime environment is written in C. Also,

the runtime environment provides a convenient interface for traversing the internal

representations of heap objects.

Observing functions, especially with the extensional representation, remains dif-

ficult, but this can be solved by enhancing the program transformation, as discussed

shortly in Section 6.5.
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It is straightforward to make observation objective and universal in C. Crawling

over the heap representation of a value in C does not cause it to be evaluated, and

thunks are easily identified. Also, in C, all representations of Haskell values in the

heap have the same type, which means that a fully polymorphic implementation of

observe is achievable.

We provide an observation function with this type:

observe :: a -> Rep

Underneath this is a call to a C function, observeC, which takes a pointer to the

object under consideration as an argument, and proceeds to build a representation

of that object. The representation encodes identifiers, data constructor applications,

primitive types, and thunks, as follows:

data Rep

= Ident Identifier -- identifiers, from Figure 3.3
| App Rep Rep -- applications
| Prim PrimData -- primitive data
| Thunk -- unevaluated expressions

data PrimData

= PrimChar Char -- Characters
| ... -- Ints, Integers, etcetera

Note that observe is impure because it encodes thunks explicitly in the repre-

sentation. The possibility of discovering a thunk in a given value depends on when

it is observed relative to the progress of the rest of the program. Therefore the result

of observe depends on the value of its argument and implicitly an external envi-

ronment. Normally this kind of impurity is handled in Haskell by the IO type, but

a pure interface makes it simpler to use. Though observe is technically impure, it

is used safely in buddha, because values are only observed once the execution of the

debuggee has terminated; after that point any two observations of the same value

will always return the same result.
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The implementation of observeC requires two problems to be solved:

1. How to construct Haskell values of type Rep in C.

2. How to obtain source-level identifiers.

Haskell values can be constructed in C using the following function provided by

GHC’s runtime interface:

HaskellObj rts_apply (HaskellObj, HaskellObj);

where HaskellObj is the C type of all Haskell expressions. Values of type Rep and

PrimData are built up from their data constructors, which are passed in to observeC

as pointer arguments.

Source-level identifiers are obtained by compiling the program for profiling. In

this mode GHC retains source-level identifiers for Haskell objects, which can be

accessed directly from an object’s heap representation. This is really a stop-gap

measure, rather than the final ideal solution. The main problem with this approach

is that a program compiled for profiling runs considerably slower than a non-profiled

version — even when no profiling statistics are gathered (as is the case in buddha).

One possible solution is to modify GHC (or whatever compiler is used) to include

source names for data constructors in non-profiled code. Another alternative is to

extend the program transformation so that data constructors are paired with their

source-level name. The main benefit of the latter is that it is less reliant on the

features of the compiler, and thus more likely to make the debugger portable to

other compilers. One way to do this is to make the name the first argument of the

constructor. For example, the Maybe type:

data Maybe a = Just a | Nothing

could be transformed to:

data Maybe a = Just String a | Nothing String

All occurrences of Just in the original program must be changed to mkJust:

mkJust = Just "Just"

Likewise for Nothing. Pattern matching rules need to be transformed accordingly

to account for the additional argument to every constructor.
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6.4.1 Cyclic values

Cyclic values require special consideration. Initially it was decided that cycles should

be detected and made explicit in the representation. Observing cycles from within

C is not difficult since pointer equality can be used for object identity, however it

imposes some constraints on the way observeC must be implemented. The main

limitation is that it is not possible to interleave the observation of a single value

with execution of Haskell code. This is due to the garbage collector, which frequently

moves objects around in the heap. Pointers to Haskell objects from C are invalidated

once the object is moved to a new location, since pointers in C are not tracked and

updated by the garbage collector. The net effect is that each object must be observed

in entirety if it is observed at all. In some cases an object is so large that it is not

feasible to print the whole thing at once; but even if only a small fraction is printed,

it must be completely traversed. As a result, observing cycles adds considerable

complexity to the code. This is rather unfortunate since cyclic values are relatively

rare in practice.

It is also quite difficult to display cyclic values in a manner which is easy to

comprehend. The most obvious way to print cyclic values is with the recursive let

syntax of Haskell, but this can get quite unwieldy for large values. An alternative

is to draw diagrams on a graphical display. After experimenting with various ways

to display cyclic values we found that often the simplest view is to unfold them

into trees, truncating them at some point to avoid an infinite printout. An added

incentive of this approach is that it is much easier to implement than any method

which shows cycles explicitly. Most importantly, the declarative program semantics

does not distinguish between cyclic terms and their unfolded representations. There

should never be an intended interpretation which relies on a value having a cyclic

representation. The biggest problem with unfolded trees is that there is no way for

the debugger to know how much printing is enough for a cyclic value. The solution

in buddha is to let the user decide, by making the truncation threshold adjustable.

By ignoring cycles, and using truncation to limit the size of printed representa-
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tions, observe can be lazy. For this to work, the implementation of observeC must

simulate in C the kind of lazy construction of values that we would normally get in

Haskell. For example, consider the following application of a data constructor Con

to some argument values:

Con arg1 ... argn

A single application of observeC to this value should return the following Haskell

expression as its result:

App ... (App (identifier for Con) (observe arg1))

... (observe argn)

Note that the observation of the sub-terms are suspended applications of (the Haskell

function) observe, which means that a pointer to observe must be passed as an

argument to observeC. Below is the C code which builds the appropriate Haskell

expression for data constructor applications:

/* build an Ident from the constructor name */

tmp = rts_apply (ident, name (obj));

/* apply observe to each of the argument terms */

for (i = 0; i < numArgs (obj); i++)

{

tmp = rts_apply

(rts_apply (app, tmp),

rts_apply (observe, obj->payload[i]));

}

return tmp;

The various new functions and variables are defined as follows: obj points to

the Haskell object under scrutiny; name returns the source name of a data con-

structor; numArgs returns the number of arguments in a constructor application;

obj->payload[i] accesses the ith argument of the application; ident points to the

Ident constructor; app points to the App constructor; and observe points to the

Haskell function of the same name.
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6.5 Observing functional values

Buddha can print functions in two ways: the so-called intensional and extensional

styles, which were first introduced in Chapter 3. The intensional style could be

handled by observe in the same way as non-functional values, but the extensional

style requires more support. This section shows that both styles of printing can be

built on top of the program transformation rules from Section 5.6, with only minor

modifications.

Recall that transformed functions are “encoded” in a new type called F:

newtype F a b = MkF (a -> Context -> b)

Encoded functions are created by a family of functions funn, where n is the arity of

the original function, and are applied using apply. Below is the transformation of

const, which serves as a running example throughout this section:

const :: Context -> F a (F b a)

const c0

= fun2 (\x c1 y c2 ->

call "const" [V x, V y] (c0, c2) (\i -> x))

The original purpose of the encoding is to avoid a typing problem, but it can

also be used for printing. The idea is extend F by pairing the function with its

representation like so:

data F a b = Intens (a -> Context -> b) IntensRep
| Extens (a -> Context -> b) ExtensRep

IntensRep and ExtensRep stand for the intensional and extensional representations

respectively.

When an encoded function is observed, the function value is skipped, and the

representation is used. The data constructors Intens and Extens tell the printer

which encoding is used in a given instance.
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For each style of representation there are three issues that need to be resolved:

1. How to encode the two types of representation.

2. How to generate an initial representation of a function.

3. How to generate a new representation when a function has been applied to an

argument.

The family of encoding functions is split into two, funIn for an intensional rep-

resentation, and funEn for an extensional representation. New representations are

generated when the encoded function is applied, combining the old representation

with the new argument, and in the case of the extensional representation, the result

of the application.

6.5.1 Intensional printing of functions

The intensional style is based on Haskell terms, using the existing Rep type:

data F a b = Intens (a -> Context -> b) Rep

The definition of Rep from Section 6.4 already accommodates partial applications of

let-bound functions and data constructors, but not lambda functions. It would be

possible to extend Rep to include lambda notation, however source coordinates are

much simpler, and in principle the debugger could use the coordinates to fetch the

original expression directly from the source file.

Rather than add a new entry to Rep for the sake of lambda functions, we just

print them using their source code coordinates, which is contained in the identifier

for the function. Lambda functions have the empty string as their name, which

distinguishes them from regular identifiers.

The apply function is extended to accommodate the Intens constructor:

apply :: F a b -> a -> Context -> b

apply (Intens f _) x context = f x context
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The funn functions are extended to include a representation in the encoded

version of a function.

Here is its original definition of fun1:

fun1 :: (a -> Context -> b) -> F a b

fun1 g = MkF g

And here is the new version which includes an intensional representation of the

function:

funI1 :: (a -> Context -> b) -> Rep -> F a b

funI1 g rep = Intens g rep

For functions of arity more than one, funIn must build a new function repre-

sentation each time the old encoded function is applied to an argument. Here is its

original definition of fun2:

fun2 :: (a -> Context -> b -> Context -> c) -> F a (F b c)

fun2 g = MkF (\x c -> fun1 (g x c))

If rep is the representation of the function, and x is it argument, then a repre-

sentation of an application of the function to x can be built using the following

utility:

appRep :: Rep -> a -> Rep

appRep rep x = App rep (observe x)

Note the call to observe which generates a printable representation of the function’s

argument. Here we can see the advantage of avoiding the IO type in observe’s result.

Here is the extended version of fun2:

funI2 :: (a -> Context -> b -> Context -> c) -> Rep -> F a (F b c)

funI2 g rep

= Intens (\x c -> funI1 (g x c) (appRep rep x)) rep

The definition of funI3 and above follow the same pattern:

funI3 g rep = Intens (\x c -> funI2 (g x c) (appRep rep e)) rep

and so forth.
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At some point an initial representation of a function must be created. This is

done where the function is defined, for example:

const :: Context -> F a (F b a)

const c0

= funI2

(\x c1 y c2 ->

call "const" [V x, V y] (c0, c2) (\i -> x))

(Ident ("Prelude.hs", "const", 12, 1))

Note that the result type contains two nested applications of F, because const has

two arguments. The outer instance of F encodes the function applied to zero ar-

guments; its representation is simply the identifier which is passed as the second

argument of funI2. The inner instance of F encodes the function applied to one

argument; its representation is the combination of the function identifier and the

representation of the argument. This new representation is built within funI2 and

passed as the second argument to funI1. For example, const applied to some ex-

pression exp, returns a function whose representation would be generated as follows:

App (Ident ("Prelude.hs", "const", 12, 1))

(observe exp)

One thing to note is that laziness is crucial for correctness. The argument exp

could be any expression. It may well be a saturated function application that is

later reduced to WHNF. One of the requirements of observation is that values are

shown in their most evaluated form, including those arguments of partially applied

functions. Therefore it is unsafe to evaluate ‘observe exp’ eagerly. Under lazy

evaluation the application of observe will not be reduced until its value is needed,

in other words, if and when the representation of the function is printed. The design

of buddha ensures that printing only happens after the evaluation of the debuggee

is complete.

Two small improvements of the transformation are possible. First, the identifier

information can be shared between the function encoding and the construction of

the EDT, like so:
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const :: Context -> F a (F b a)

const c0

= funI2

(\x c1 y c2 ->

call identifier [V x, V y] (c0, c2) (\i -> x))

identifier

where

identifier = Ident ("Prelude.hs", "const", 12, 1)

Second, the correct parent for the intensional style is found when the function is

fully applied. This corresponds to c2 in the above example. Thus there is no need

to pass the other parent, c0, to call, so it can be eliminated:

call identifier [V x, V y] c2 (\i -> x)

6.5.2 Extensional printing of functions

The extensional style collects the so-called minimal function graph for a particular

invocation of a function. The representation type is a list of values, injected into

the universal type Value:

type FunMap = [Value]

For example, a function that takes ’a’ to ’b’ and ’c’ to ’d’, might be represented

with the following map:

[V (’a’, ’b’), V (’c’, ’d’)]

The order of entries in the map is determined by the order that the applications

occur, but for the purposes of debugging it can be regarded as a multiset.

Each time an encoded function is applied, the argument and result values are

added to the existing function map by destructive update. An IORef provides the

mutable reference:

data F a b = Intens ...

| Extens (a -> Context -> b) (IORef FunMap)

A new equation is added to apply for this purpose:
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apply (Extens f funMap) arg context

= recordApp arg (f arg context) funMap

The application of the function to its argument is recorded in the function map by

way of recordApp:

recordApp :: a -> b -> FunMap -> b

recordApp arg result funMap

= unsafePerformIO $ do

map <- readIORef funMap

writeIORef funMap (V (arg, result) : map)

return result

A fresh empty map is allocated for every function value that is created in the

execution of the program, i.e. whenever a function is invoked for the first time,

including functions which are created by partial application. While it is possible

to share function maps between two distinct instances of a given function, it is

desirable to keep them separate in order to reduce the size of their printout. The

initial function maps are constructed when encoded functions are created by the

funEn family of functions. A first attempt at funE1 might look like this:

funE1 :: (a -> Context -> b) -> F a b

funE1 g = Extens g (newIORef [])

However, a problem occurs because the underlined expression is constant. An opti-

mising compiler can lift this expression to the top-level of the program, thus causing

it to be evaluated once, instead of every time funE1 is called. This means that all

encoded functions produced by funE1 will share the same mutable function map.

The intended semantics is that each instance of an encoded function gets its own

fresh copy. The solution employed in buddha is to make the construction of the new

function map depend (artificially) on the argument of funE1, like so:

funE1 g = Extens g (newFunMap g)

newFunMap :: a -> IO FunMap

newFunMap x = newIORef [V x]

The compiler cannot lift the right-hand-side to the top level because it is no longer

a constant expression. Of course this value should not be part of the final display
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of the function, so the last value in every map is ignored by the printer. A similar

approach is used to add function maps to fun2 and above:

funE2 g = Extens (\x c -> funE1 (g x c)) (newFunMap g)

funE3 g = Extens (\x c -> funE2 (g x c)) (newFunMap g)

...

The observation of a function encoded with an extensional representation works

in almost exactly the same way as an ordinary non-functional value, except when

it comes to printing. The object is passed to observe as usual, which returns a

representation. Normally representations are pretty printed in the obvious way,

using Haskell-like syntax, however the pretty printer treats data wrapped in the

Extens constructor specially.

The small example map mentioned above, for the function over characters, would

appear to observe as the following data structure:

Extens <function>
(<IORef >

(V (’a’, ’b’) : (V (’c’, ’d’) : (<init> : []))))

<function> denotes the unencoded function, <IORef > denotes the internal represen-

tation of IORefs used by GHC, and <init> denotes the initial value placed in the

map by newFunMap. When the pretty printer encounters a representation involving

the Extens constructor it switches to an interpreted mode of printing, which effec-

tively ignores everything in the above data structure except those parts which are

underlined. The output is a string which shows just the mappings of the function,

like so:

{ ’a’ -> ’b’, ’c’ -> ’d’ }

The transformation of const for the extensional style goes as follows:

const :: Context -> F a (F b a)

const c0

= funE2

(\x c1 y c2 ->

call identifier [V x, V y] c0 (\i -> x))

where

identifier = Ident ("Prelude.hs", "const", 12, 1)
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The correct parent for the intensional style is found in the context where the function

is first mentioned by name, which corresponds to c0. Therefore, only c0 is passed

to call, as the underline indicates.

6.5.3 Combining both styles

The possibility different printing styles for functions raises three questions for the

user interface of the debugger:

1. How does the user tell the debugger which style to use for a particular function

or group of functions?

2. Can the two styles be used at the same time?

3. What is the appropriate style for library functions?

Buddha provides two methods for the user to determine which style of printing to

use. The first method applies to a whole module at a time, which is given as a com-

mand line flag to the transformation program: ‘-t extens’ for the extensional style,

and ‘-t intens’ for the intensional style. If no flag is set then the intensional style is

taken as the default. The second method applies to individual function definitions,

and is given in a separate “options file” (which also caters for trust annotations,

see Section 7.3). The user can supply one such options file for each module in the

program. Within the options file individual function names are associated with a

flag which indicates the desired printing style. For example:

const ; extens

The options file also allows default styles to be declared, and has special syntax for

functions defined in nested scopes, type classes, and instance declarations. Currently

there is no way to refer to a lambda function specifically, but a workaround is for

the user to manually bind the function to a name. If there is no options file for a

given module, the command line settings are used.
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Both styles of printing can be used in the same program without any difficulty,

and this can give rise to composite function representations. Consider the following

example:

compose f g x = f (g x)

inc x = x + 1

start = map (compose inc inc) [1,2]

If inc uses extensional style, and compose uses the intensional style, the argument

of map will be printed as follows:

compose { 3 -> 4, 2 -> 3 } { 2 -> 3, 1 -> 2 }

While composites are possible, it must be noted that individual let-bound and

lambda functions can only be printed in one way in a given program. This can cause

problems with library code, because libraries are transformed once, which means the

style of printing for each library function is permanently fixed.1 A work-around is

to re-define the function locally in user code, which can be as simple as wrapping

the function in a let-binding, like so:

start = let m = map in m (compose inc inc) [1,2]

If a large number of functions need to be re-defined then it is more practical to

copy the whole library module to the user’s source tree, and transform it there. The

downside with both solutions is that they require manual modification of the user’s

program, and it would be preferable to automate this in the debugger’s interface.

Currently all library modules are transformed so that functions use the intensional

style. This is because the extensional style is generally more expensive in space and

time than the intensional style. The reason is that the extensional style introduces

more work for each function application, and it tends to retain references to more

values, which prevents their garbage collection.

1A similar issue occurs with trusted functions. Library functions are trusted by default, but
sometimes the user might like to see the applications of library functions in the EDT.
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6.6 Optimisation

The transformation of saturated function applications can be optimised by avoiding

the use of encoded function representations. Where the optimisation applies, func-

tion values can inhabit their ordinary Haskell representation, allowing the built-in

version of application to be used instead of apply. The benefit is an improvement in

the execution time of transformed programs because some of the overheads involved

with encoded functions are avoided. Saturated applications are common in practice

and thus the optimisation is widely applicable.

The transformation of applications from Figure 5.8 (ExpApp) assumes that all

functions are encoded. For saturated applications, intermediate encoded functions

are created only to be immediately decoded and applied. The encoding serves no

useful purpose in this case, and should be avoided. Consider an expression of the

form ‘f E1 E2’, where f is a let-bound function of arity two. After transformation

it becomes:

apply (apply (f i) E〚 E1 〛i i) E〚 E2 〛i i

There are two things to note. First, two encoded functions are constructed only

to be immediately deconstructed by apply. Second, the three context arguments

of f (which are denoted by i) are all the same. Ideally, the expression should be

translated into something like the following which avoids the redundancies:

f i E〚 E1 〛i E〚 E2 〛i

f is applied to its arguments using normal function application, and it receives only

one context value. This requires two versions of f : one which works in the general

case of partial application, and one which is specialised for saturated application.

Figure 6.2 contains the optimised transformation rule for function declarations.

Essentially the old rule for function bindings from Figure 5.7 (FunBind) is split in

half, producing two functions instead of one. The first caters for saturated applica-

tions, and carries out the work of building EDT nodes. The second function provides
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D〚 x y1 . . . yn = E 〛 ⇒
sx c y1 . . . yn = call c "x" [V y1, . . . , V yn]

(\i -> E〚 E 〛i)

px c0 = funn (\y1 c1 . . . yn cn -> sx c0/n y1 . . . yn)

Figure 6.2: Optimised transformation of function declarations.

D〚 xn :: T 〛 ⇒ sx :: Context -> S〚 T 〛n

⇒ px :: Context -> T 〚 T 〛

S〚 T1 -> T2 〛
0

⇒ F T 〚 T1 〛 T 〚 T2 〛

S〚 T1 -> T2 〛n+1
⇒ T 〚 T1 〛 -> S〚 T2 〛n

S〚 T 〛n ⇒ T 〚 T 〛 (T 6= T1 -> T2)

Figure 6.3: Optimised transformation of types.

an encoded interface which is suitable for partial applications, and is simply a thin

wrapper around the first function. The two functions cannot have the same name,

so a single letter prefix is added to distinguish them; s for the saturated variant and

p for the partial variant. A renaming phase prior to transformation ensures that no

name clashes are introduced.

The transformation rules for types and signatures are also modified. Figure 6.3

contains the new rules. The type of the partial variant is transformed in the same

way as the original rule, whereas the type of the saturated variant is transformed

in an arity dependent manner. The notation xn means that the function x has an

arity of n. If a function has n arguments then the first n function arrows in the

spine of its type remain intact (in the partial variant all arrows are replaced by

F). This is done by S which takes an additional parameter which gives the arity

of the function. There are two ways to determine a function’s arity: by counting

the parameters in its head, or by counting the number of function arrows in the

spine of its type. The second count can be greater than the first because the type

abstracts over the distinction between the head and body of a function definition.
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For example consider this function:

f :: a -> b -> c -> b

f x = const

The first count gives an arity of one, and the second gives three. Arities are calcu-

lated in buddha in the first way, for two reasons. First, it accords with our concept

of a redex, which is a term which matches the left-hand-side of a program equation.

Second, because it can be done without type inference. This means that f is consid-

ered saturated when it has been applied to one argument, giving rise to these two

type signatures:

sf :: Context -> a -> F b (F c b)

pf :: Context -> F a (F b (F c b))

A minor technical problem occurs because two different type class instances of

a particular overloaded function can have different numbers of parameters in their

heads. For example:

class Show a where

show :: a -> String

instance Show Bool where

show x = showBool x

instance Show Char where

show = showChar

According to the arity calculation mentioned earlier, the Bool instance of show has

an arity of one, but the Char instance has an arity of zero. In this situation buddha

counts the arity of the function from the type scheme in the class declaration. Class

instances which have a different number of parameters than the expected arity have

arguments added or subtracted to their definition in order to rectify the mismatch.

In the above example the definition of show for the Char instance will be modified

to ‘show x = showChar x’.

Function applications are transformed to accommodate the optimisation as

shown in Figure 6.4. The first rule transforms applications of let-bound identi-

fiers with arity m to n arguments. If m = n the application is saturated, which

149



6.6 Optimisation

E〚 xm E1 . . . En 〛i

(m = n) ⇒ sx i E〚 E1 〛i . . . E〚 En 〛i

(m > n) ⇒ apply . . . (apply (px i) E〚 E1 〛i i) . . . E〚 En 〛i i

(m < n) ⇒ apply . . . (sx i E〚 E1 〛i . . . E〚 Em 〛i) . . . E〚 En 〛i i

E〚 km E1 . . . En 〛i

(m = n) ⇒ k E〚 E1 〛i . . . E〚 En 〛i

(m > n) ⇒ apply . . . (apply (coni k) E〚 E1 〛i i) . . . E〚 En 〛i i

E〚 E1 E2 〛i ⇒ apply E〚 E1 〛i E〚 E2 〛i i

Figure 6.4: Optimised transformation of function application.

means that the saturated variant of the function (sx) can be called using normal

function application. If m > n the application is partial, which means that the

partial variant of the function (px) must be called. The function is applied to

each argument one-at-a-time and the intermediate encoded functions are decoded

by apply. If m < n then the application is over-saturated. The saturated part is

dealt with as earlier. The result of the saturated application is an encoded function,

which must be applied to its arguments in the same way as partial applications.

The second rule transforms applications of data-constructors with arity m to n ar-

guments. This is much the same as the case for let-bound identifiers, except that

data constructors cannot be over-saturated. The optimisation is especially effective

in this case because data constructors are most often used in saturated contexts.

Other types of function application can also be optimised, such as when the leftmost

expression is a lambda function, but these cases are quite uncommon, and thus un-

likely to be fruitful. Therefore all other applications types are transformed by the

third rule which is identical to the original unoptimised approach.
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6.7 Displaying large values

A major problem for all debugging tools is handling values which are too large to

display all at once. Truncation is a cheap solution, but it does not always give the

best results.

Often the correctness of a reduction will depend only on a relatively small sub-

part of a value. In those cases it is much more useful to be able to focus on the

relevant pieces, which requires a more fine-grained control of how values are dissected

and printed. Various techniques are possible. Examples include:

1. An interactive term browser, which allows the user to explore values in a fash-

ion similar to the way hierarchical file-systems are used on modern operating

systems.

2. A term query language, akin to a query language in a relational database.

3. Custom printing routines, which are crafted for particular types of values,

producing whatever syntax is most convenient for the user, and filtering out

parts which are not of interest.

All of this ties into the general field of usability, which, though very important, has

not been the primary focus of this thesis. Future work on buddha will certainly

address these issues.

Another interesting idea, which seems to have originated in Nilsson and Fritzson

[1993], is to use type information to simplify the display of reductions involving

polymorphic functions. For example, list reverse has this type scheme:

reverse :: [a] -> [a]

reverse does not depend on the actual values in the list, only their order, therefore

it is possible to replace the values with labels. For instance this reduction:

reverse ["Fred", "Ned", "Barry"] => ["Barry", "Ned", "Fred"]
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can be abbreviated like so:

reverse [e1, e2, e3] => [e3, e2, e1]

which is clearly much simpler.

Unfortunately this idea does not have a big effect in practice. The reason is

that it is limited to parametric polymorphism. This kind of polymorphic function

tends to be small and of general utility, and as such it is most common in libraries.

However, library code is usually well tested, and thus trusted by the debugger. Hence

there are typically few nodes in the EDT for parametric polymorphic functions. An

interesting question for future research is whether something similar can be done for

overloaded functions, which is the type of polymorphism that occurs more frequently

in user code.
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Chapter 7
Practical Considerations

Programs are complex artifacts, and debugging is often a struggle against

complexity. Why should the programmer have to face it alone? Let’s make

the computer take an active role in helping the programmer deal with

complexity.

The Debugging Scandal and What to do About It

[Lieberman, 1997]

7.1 Introduction

W
hilst the theory of declarative debugging is attractive and fairly well

known, the practice of applying it to real programs remains difficult,

especially for lazy functional languages.

This chapter addresses two problems that have hindered earlier efforts: I/O, and

resource intensive computations.

The inherently stateful nature of I/O means that the relative order of opera-

tions is central to the question of program correctness. For this reason Haskell has

evolved an imperative style to cope with the demands of I/O, based on monads (see

Section 2.4). It is not surprising then that programmers tend to adopt an impera-

tive mode of thought when developing the I/O parts of their code. Can we apply
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declarative debugging to I/O? We can, provided that we can print the effects of I/O

functions in a fashion which is meaningful to the programmer. The extensional style

of printing higher-order values provides a very simple solution to this problem.

Long running computations are difficult to debug, regardless of the programming

language, simply because the accumulated history of individual execution events can

grow to sizes which no human can feasibly digest. The post-mortem nature of declar-

ative debugging introduces scalability problems because the size of the EDT grows

proportionally to the running time of the debuggee. It is not difficult to find pro-

gram runs for which the size of the EDT far outstrips the available memory on even

the most powerful of modern machines. The most obvious solution is to materialise

only some parts of the whole EDT at any one time. In this chapter we explore

two ways to reduce the size of the EDT. First, we only record nodes for suspicious

functions, and second, we employ a piecemeal approach to EDT construction. Both

ideas are well established in the literature; our contribution is to show how they can

be achieved in a debugger based on program transformation.

7.1.1 Outline of this chapter

The rest of this chapter proceeds as follows. In Section 7.2 we consider debugging

the I/O parts of programs, with special emphasis on the printing values of the IO

type. We also consider the relationship between the structure of the EDT and code

which arises from the use of do-notation when used for the IO type. Haskell 98 style

exceptions are briefly discussed. At the end of the section the performance of our

IO implementation is evaluated. In Section 7.3 we show how the performance of the

debugger can be improved by optimising the treatment of trusted function appli-

cations. In Section 7.4 we consider piecemeal EDT construction, which keeps the

memory requirements of the debugger in check by building only part of the EDT at a

time. First a very simple scheme is described, which is easy to implement. The per-

formance of this approach is measured on five programs, then various improvements

are discussed. In Section 7.5 we discuss the status of the implementation.
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7.2 I/O

7.2.1 Printing IO values

Incorporating IO functions in the debugger is challenging because it is not obvious

how to print values of the IO type. Merely printing the internal representation used

by the compiler is unlikely to be fruitful because IO is an abstract data type, which

means that the programmer is not (supposed to be) aware of its representation.

Nonetheless, programmers do have intended interpretations for IO functions, which

can be stated declaratively. The basic idea is that the result of an IO function can be

viewed as the combination of the returned value plus a sequence of side-effects. Our

goal is to find a way to print IO values in a fashion that contains all that information.

Consider the following buggy code. It is supposed to prompt the user with a

question, return True if they input ’t’, return False if they input ’f’, and repeat

the question in a loop if they input anything else:

ask :: String -> IO Bool

ask question

= do putStr question

response <- getChar

act response question

act :: Char -> String -> IO Bool

act response question

= case response of

’t’ -> return True

’f’ -> return True

other -> do putStr "\nPlease enter t or f\n"

ask question

Suppose that ask is called with the question “Do you know the way to Santa Fe?”,

resulting in the following interaction with the user (whose responses are typed in

italics):

...

Do you know the way to Santa Fe? N

Please enter t or f

Do you know the way to Santa Fe? f

...
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Owing to the bug, ask returns True when it should have returned False. Now

consider judging the correctness of the first call to ask; how should the reduction

be shown? The following reduction is insufficient:

ask "Do you know the way to Santa Fe?" => True

The correctness of the call depends on the interaction with the user, but that infor-

mation is missing.

The most common way of implementing IO (in current Haskell compilers) is as

a state-of-the-world transformer function, like so:

type World = ...

newtype IO a = IO (World -> (World, a))

instance Monad IO where

return x = IO (\w -> (w, x))

IO f >>= next

= IO (\w1 -> case f w1 of

(w2, v) -> case next v of

IO g -> g w2)

The World type is merely a token representing the state of the real world; its value is

of no particular significance. At first sight it would appear that this implementation

of IO is unsuitable for printing because there is no mention of the actual effects,

but this can be rectified by using the extensional style, as the following discussion

demonstrates.

The key idea is to turn the World into a counter, which is incremented each time

a primitive IO operation is performed:

type World = Natural -- unsigned integer

The link between IO values and the world counter becomes clear when the state

transformer function is printed in the extensional style. For instance, the reduction

for the first call to ask might be printed like so:

ask "Do you know ... Santa Fe?" => { 11 -> (16, True) }
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This means that before the call the world counter was 11, and after the call it was

16. Five effects happened within the call, namely:

12: putStr "Do you know the way to Santa Fe?"

13: ’N’ <- getChar

14: putStr "\nPlease enter t or f\n"

15: putStr "Do you know the way to Santa Fe?"

16: ’f’ <- getChar

The effects include those that arise directly from the body of ask and also those

that arise from the functions it calls.

When an IO value is printed, the user must be able to discover exactly what

effect happened at each world increment. This is done by caching all the primitive

effects in an array which is indexed by the World counter. The user can query the

array to discover individual effects, or sequences of effects, like so:

buddha> show io 12-16

which prints a list of the effects numbered 12 to 16, similar to that shown above.

Each element in the array records an event, which is a pair containing the action

that was performed and its return value:

type IOEvent = (IOAction, Value)

data IOAction

= PutStr String

| GetChar

...

ioTable :: IOArray World IOEvent

recordIOEvent :: IOEvent -> IO ()

From the example above, the element at index 16 in the array would contain the

entry: (GetChar, V ’f’). IOArray is an array of mutable elements available in the

IO monad. The maximum number of IO effects produced by a program is normally

not known in advance, so the array is dynamically resized, by doubling its previous

size whenever it gets full.

The program transformation for debugging must be applied to the whole pro-

gram, including the IO type. Since the argument of the IO constructor is a function,
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it must be transformed into the encoded form of functions using the F type con-

structor:

newtype IO a = IO (F World (World, a))

The IO primitives need special support because they are not implemented in Haskell.

Rather than write our own set of primitives, it is much simpler to reuse those

provided by the compiler. This requires an interface between the IO type in buddha

and the IO type of the compiler. Since this interface is needed for every primitive,

it also makes the perfect place to update the state counter:

performIO :: IOAction -> World -> Prelude.IO a -> (World, a)

performIO action world io

= seq nextWorld $ unsafePerformIO $

do val <- io

recordIOEvent (action, V val)

return (nextWorld, val)

where

nextWorld = world + 1

threadIO :: IOAction -> Prelude.IO a -> Buddha.IO a

threadIO action io

= IO (funE1 (\world _ctxt -> performIO action world io))

primGetChar :: Context -> Buddha.IO Char

primGetChar context = threadIO GetChar Prelude.getChar

threadIO turns the standard IO type (Prelude.IO) into buddha’s IO type, and

via performIO, updates the state counter and records the effect in the IOEvent

array. Note the use of funE1 to produce an extensional encoding of the function

inside the IO type. primGetChar illustrates the way that individual primitives are

implemented. It takes a context argument (which it ignores) to give it an interface

which can be called from transformed code.

The monad class instance for IO is transformed in the usual way, with a proviso

that the state transforming functions (the lambda abstractions underneath the IO

constructor) use the extensional style. Do notation is desugared before program

transformation, which makes the calls to >>= explicit.
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7.2.2 EDT dependencies for IO code

An important consideration is the shape of the EDT. There is a potential discrepancy

between the dependencies suggested by the do-notation, and those that arise from

the desugared version of the code. In the above example, the do-notation suggests

that there is a direct dependency between ask and act. However, in the desugared

code below, the link is interrupted by the introduction of >>= and nested lambda

abstractions:

ask question

= (putStr question) >>=

(\_ ->

getChar >>=

(\response ->

act response question))

The issue is easier to discuss if all the lambda abstractions in ask and >>= are given

names, and the different uses of >>= are named apart:

ask question

= (putStr question) >>=a lamAsk1

where

lamAsk1 _ = getChar >>=b lamAsk2

lamAsk2 response = act response question

IO f >>= next

= IO lamBind

where

lamBind w1 = case f w1 of

(w2, v) -> case next v of

IO g -> g w2

It is important to note that we could transform any individual function in the above

code (including the lambda abstractions) in either the intensional or extensional

style. The most important question is what is the link, if any, between ask and act,

when different styles of transformation are used? Ultimately it comes down to how

each of lamAsk1, lamAsk2, and lamBind determine their parents.
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lamBind a

lamBind b

>>=b

ask

act

getChar

>>=a lamAsk1

lamAsk2

putStr

Figure 7.1: IO dependencies (extensional).

For the purpose of illustration we consider three different cases:

1. All functions are transformed using the extensional style.

2. All functions are transformed using the intensional style.

3. All functions are transformed using the intensional style, except lamBind,

which is transformed using the extensional style (as it is done in the current

version of buddha).

Figure 7.1 illustrates the dependencies that arise in the first case. All let-bound

functions determine their parent at the place where they are first mentioned. Here

act is a descendant of ask, which reflects the kind of relationship suggested by the

do-notation. As an aside, in practice, the lambda abstractions would be trusted

functions, therefore it would appear to the user as if act was a child of ask. It is

also worth noting that in this situation the kind of transformation applied to >>=

and lamBind has no effect on the relationship between ask and act.

Figure 7.2 illustrates the dependencies that arise in the second case. All let bound

functions determine their parent at the place where they become fully saturated

redexes. In this situation the EDT appears to be rather disjoint, because the calls

to lamBind are no longer children of the respective calls to >>=. This means that

the sub-trees for each lamBind are lifted out of the sub-tree for ask. Therefore act

is no longer a descendent of ask.
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lamBind a

blamBind

putStr

getChar

>>=a

>>=b

ask

lamAsk1 act

lamAsk2

Figure 7.2: IO dependencies (intensional).

ask

putStr

getChar

>>=a

>>=b

lamBind

lamAsk1

lamBind

lamAsk2

b

a

act

Figure 7.3: IO dependencies (intensional, except lamBind).
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Figure 7.3 illustrates the dependencies that arise in the third case. Compare

this EDT with the one in Figure 7.2. Note that it is the position of lamBind which

ensures that act is a descendent of ask.

Which EDT is preferable? It is difficult to say that one EDT is always better

than the others because the monadic style permits at least two different views of

a piece of code. The “low-level” view includes the plumbing machinery inside the

definition of >>=, and the “high-level” view abstracts over this. Printing IO values

(i.e. lamBind) in the intensional style reflects the low-level view because it requires

the user to be aware of the internal workings of >>=. The extensional style reflects

the high-level view because IO values are shown as abstract mappings over states

of the world (with no internal structure). Most of the time the high-level view is

desirable, since we tend to think of a monad as a mini domain specific language,

which provides an interface to a special computational feature. The do-notation

is the syntax of the new language. In most cases the best EDT is the one which

reflects the dependencies suggested by that syntax, rather than its desugaring, hence

in buddha we transform IO values to reflect the high-level view.

7.2.3 Exceptions

Haskell 98 supports a limited kind of exception handling mechanism for errors in-

volving IO primitives. The IO type above must be extended slightly to accommodate

this feature. The standard library provides the IOError data type which encodes

various kinds of errors that can happen when an IO operation is performed, for

example attempting to open a file which does not exist:

data IOError = ...

Programmers can trap these errors with the function catch, but only in the IO

monad:

catch :: IO a -> (IOError -> IO a) -> IO a

The first argument is an IO computation to perform, and the second argument is

an exception handler. The value of the expression ‘catch io handler’ is equal to
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‘handler e’, if io raises the exception e, otherwise it is equal to io.

We extend the IO type slightly to encode the possibility of an exception in the

result:

data Either a b = Left a | Right b

newtype IO a = IO (World -> (World, Either IOError a))

which means that catch can then be implemented in ordinary Haskell code in a

fairly obvious way. The only remaining problem is how to transfer exceptions from

the built-in version of IO to buddha’s version of IO. IOErrors can only be raised

by one of the built-in primitive functions. Thus, all potential exceptions can be

caught using the built-in catch at the point where the primitives are called within

performIO:

performIO action world io

= seq nextWorld $ unsafePerformIO $

do x <- try io

case x of

Left e -> do recordIOEvent (action, V e)

return (nextWorld, Left e)

Right val

-> do recordIOEvent (action, V val)

return (nextWorld, Right val)

where

nextWorld = world + 1

try io

= Prelude.catch (do { v <- io; return (Right v) })

(\e -> return (Left e))
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Figure 7.4: Memory usage versus input size with IO tabling enabled.

7.2.4 Performance

The performance cost of tabling primitive IO actions can be gauged with the follow-

ing simple program:

main = loop 0

loop i = do

getChar

print i

loop (i+1)

The program implements a tight loop, which repeatedly reads a character from the

standard input and prints an integer to the standard output. The program stops

(and raises an exception) when the input is exhausted (i.e. when the end of file is

encountered on Unix). We transformed the program for debugging and measured

its space and time behaviour for several large input sizes. To measure just the cost

of tabling (as closely as possible) we modified the debugger so that the EDT was

not constructed.

Figure 7.4 plots the memory usage of the transformed program versus the number
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Figure 7.5: Running time with IO tabling enabled relative to the original program.

of characters in the input (ranging in size from 20,000 to 120,000). As expected the

memory usage grows linearly with the size of the input, though the growth is stepped

owing to the fact that the array which stores the IO events is doubled in size each

time it is extended. For each input character the program performs three primitive

IO actions: a getChar to read the character, a putStr1 to print the integer, and a

putChar to print a newline (print calls putStrLn, which in turn calls putStr and

putChar). Therefore the gradient of the graph suggests that in this example each

tabled IO action requires about 130 bytes of memory on average.

Figure 7.5 plots the time usage of the transformed program versus the number

of characters in the input (using the same data as before). The time is measured

relative to the running time of the original untransformed program on the same

input. Three lines are drawn on the graph. The bottom line (dashed) shows the

performance of the program where IO tabling is disabled (that is, the program is

transformed for debugging but IO events are not recorded in the table). The top

1In buddha putStr is treated as a primitive IO function even though it could be implemented in
terms of putChar. It is generally preferable for the user if they have to consider just one putStr

event instead of many separate putChar events.
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line (dot-dashed) shows the performance of the program with IO tabling enabled.

There is a substantial difference between this line and the bottom one, and worse

still, the relative cost keeps growing with the size of the input.

The reason for this poor performance is that IO tabling uses a mutable data

structure which triggers a well-known problem with GHC’s garbage collector. GHC

employs a generational collector, where long lived data values are scanned less fre-

quently than younger values. The heap is divided into at least two partitions, called

generations. For the sake of this discussion we will assume there are just two, which

is the default anyway. The old generation contains values which are retained in

the heap for relatively long periods of time. The young generation contains newly

constructed values. An object is moved from the young generation to the old gen-

eration if it stays alive for some threshold period of time. The garbage collector

scans the heap in two ways. A minor collection just looks at the young generation

of values, whereas a major collection looks at both generations. Minor collections

happen more often than major ones because scanning values which are not garbage

is wasted work, and values in the young generation are more likely to be garbage

than values in the old generation. In a system with only immutable values, elements

of the young generation can refer to elements of the old generation, but not vice

versa. So if a minor collection finds that there are no references to an object in the

young generation then it is safe to say that it is garbage: there is no need to check

for references to that value in the old generation. However, mutable values allow

values of the old generation to refer to values of the young generation. To work

around this problem, GHC’s collector (up until version 6.4 of the compiler) scans all

mutable values at each minor collection. This means that the IO table is scanned

at every minor collection, despite the fact that it never contains any garbage. This

results in very poor performance. As the table gets bigger the scanning time gets

longer.

We can work around this problem by setting the minimum heap size used by

the program to a large value. This causes fewer minor collections, which reduces
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the number of times the IO table is traversed. The middle line in Figure 7.5 (solid)

shows the performance of the program with IO tabling enabled and a minimum heap

size of 100MB. In this case the program is about four times slower than the original,

regardless of the size of the input, which is not much worse than the case where IO

tabling is disabled.

It is difficult to make definitive conclusions from this one example, but it seems

that the overheads incurred by IO tabling are within reasonable limits, at least when

a large minimum heap is used. Our experience is that debugging with IO tabling

enabled is quite acceptable for program runs which are not particularly IO intensive.

7.3 Trusted functions

In most debugging sessions the programmer will have a fair idea which functions are

likely to be buggy, and which are not:

• It is possible to rule out parts of the program which are executed after the bug

has been observed in the output.

• The results of testing — especially unit tests — may also provide useful infor-

mation about where to hunt for bugs.

• Some functions may be considered correct, perhaps by proof, or by rigorous

testing; for instance library functions.

Declarative debuggers can capitalise on this information by pruning nodes from the

EDT which correspond to applications of trusted functions. The benefits of fewer

nodes in the EDT are twofold: fewer judgements are required from the oracle, and

the EDT consumes less space. Trusting is particularly attractive because it is both

simple to implement and very effective. Figure 7.6 lists the percentage of all EDT

nodes which arise from functions in trusted standard libraries in the suite of five

non-trivial sample programs which were first mentioned in Chapter 5. It is clear, at

least in these examples, that big savings can be had by optimising the behaviour of

the debugger for trusted functions.

167



7.3 Trusted functions

program trusted nodes

Pancito 73 %
Cacheprof 89 %
Raytrace 96 %
Prolog 64 %
Mate 73 %

Figure 7.6: Percentage of nodes which come from functions in trusted standard libraries.

Which nodes should be removed from a sub-tree whose root contains a trusted

application? Various approaches are possible, for example:

• Prune the whole sub-tree.

• Prune only the root node. Suspicious descendents of the node become children

of the root node’s most recent suspicious ancestor.

• Prune nodes after a certain depth has been reached.

• Only prune nodes whose arguments match certain requirements.

The first two are the most commonly implemented in practice. The second option

is useful in cases where a higher-order function is trusted, but it is passed a suspi-

cious function as an argument, which is subsequently applied and reduced inside its

body (although this is only relevant when the higher-order argument is printed in

intensional style).

Buddha employs the second option. Each let-bound function can be declared to

be either trusted or suspicious. Suspicious functions are transformed as before, but

trusted functions are transformed so that they do not build EDT nodes. Instead,

a trusted function passes its parent context directly onto the functions which are

called in its body. Therefore, a suspicious function call inserts its node into the

context from its most recent suspicious ancestor, which may be the parent of the

node, or its grand-parent, or great-grand-parent etcetera.

Fortunately it is easy to change the transformation rules to support trusted

functions. In Chapter 5 we employed the call function to build EDT nodes (see
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Figure 5.2). For trusted functions call is replaced by a new function, trustCall,

which is defined as follows:

trustCall :: Context -> (Context -> a) -> a

trustCall context body = body context

The first parameter, context, represents a reference to the call’s closest suspicious

ancestor. The second parameter, body, is the transformed version of the function’s

body. It is clear that the parent context is simply passed on to all the children of

the call. Trusted pattern bindings are handled in a similar way.

The confidence value of each function is set at the time of program transfor-

mation. There are two ways that a user can declare the confidence values. First,

they can issue a command line argument, ‘-t trust’ or ‘-t suspect’, which sets

the confidence for every function in a given module. Second, they can provide an

options file for a given module, which sets the value for individual functions. The

command line overrides anything which is set in an options file.

7.4 Piecemeal EDT construction

The biggest impediment to implementing a practical declarative debugger is the

space consumed by the EDT. Space is used in two ways: first, for the EDT nodes

themselves, and second, for the argument and result values pointed to by the nodes.

In a naive implementation the whole EDT is constructed by a single execution of the

debuggee. The EDT is not traversed until the debuggee has terminated which means

that the whole tree must be retained in memory. The argument and result values

referred to by the EDT cannot be garbage collected as they would have been in the

original program. Thus the space usage of a naive debugger grows proportionally

to the running time of the program. Only the shortest of program runs can be

debugged this way on a modern machine.
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This is a well known problem, and various solutions have been proposed in the

literature:

• Trusting: as discussed in the previous section.

• Partial EDT construction: when the size of the EDT becomes too big, stop

collecting nodes [Sparud, 1999].

• Saving to disk: write the whole EDT (or program trace) to the much larger

(but slower) hard disk drive [Chitil et al., 2002].

• Piecemeal EDT construction: only a small sub-tree of the EDT is kept at any

time. Debugging proceeds with the sub-tree as normal. If a pruned leaf node

is reached, its own sub-tree is re-generated by re-executing (perhaps part of)

the program again [Naish and Barbour, 1996, Nilsson, 1998, Pope and Naish,

2003b, MacLarty and Somogyi, 2006].

Trusting is not a complete solution on its own, because the number of nodes

generated by suspicious functions can still be prohibitively large; therefore it must

be accompanied by another scheme.

Partial EDT construction is a fairly cheap solution, but pruned sub-trees may

contain buggy function applications, which reduces the accuracy of the diagnosis.

Saving to disk is motivated by economics. Per megabyte, disk drives are roughly

two orders of magnitude cheaper than RAM (chip memory). Consequently, disk

drive capacities on typical personal computer workstations are about two orders of

magnitude larger than their RAM capacities. However, the free space available to

an individual user may be much less, perhaps only one order of magnitude larger.

Saving to disk does not solve the space problem, but simply moves it to a cheaper

device. An advantage of saving to disk is that the EDT can be reused many times

without having to execute the debuggee again; you can even run the debuggee on

one computer and debug on another. The main disadvantage of saving to disk is that

RAM is much faster; the access time of RAM is about five orders of magnitude faster
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than disk, and the bandwidth of RAM is about one-to-three orders of magnitude

faster than disk.2

Piecemeal generation materialises only part of the EDT at a time, and re-

generates the missing parts on demand by re-executing the program: a classic

space/time tradeoff. This section shows how a fairly simple version of piecemeal

EDT construction can be added to buddha, and discusses various ways in which it

can be improved.

7.4.1 The basic idea

Initially the debuggee is executed and the EDT is collected with a root node corre-

sponding to the evaluation of main. The EDT is materialised up to a predetermined

depth from the root. Nodes which form the fringe of this initial EDT contain a flag

which tells the debugger their sub-trees have not been constructed. Nodes which

would normally be deeper than the fringe are not constructed at all. Debugging

proceeds with this initial tree. If a buggy node is located, the debugging session

is complete. If a fringe node is encountered, its sub-tree is materialised up to a

certain depth by running the program again. Debugging then resumes with the new

sub-tree. The process continues along the same lines until the debugging session is

finished.

7.4.2 Problems

Running a stateful fragment of code multiple times may not always produce the same

behaviour, unless the state is re-set before each run. At first sight it would seem

that re-executing parts of a purely functional program should be straightforward,

because there is no implicit state. Unfortunately, this is not entirely true, principally

because the debugger can observe the (stateful) effects of computation which are not

visible at the Haskell level.

2These are very approximate figures based on the peak performance of commodity hardware
components.
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There are three places where state is observed by the debugger: lazy evaluation,

CAF evaluation, and I/O.

To materialise the sub-tree at a fringe node, it is necessary to re-execute the part

of the program that produces nodes in that tree. Intuitively it should be possible

to save a copy of the call in the fringe node and re-execute it when the node is

encountered. Lazy evaluation makes this difficult because the extent to which an

expression is evaluated is context dependent. The result of a call might have only

been partially computed in the original program run. A safe re-execution should

only demand the result to the same extent. To do this we would need to somehow

reconstruct the same level of demand as the original call, but that information is not

necessarily locally available, and may depend on an intricate chain of calls spread

across many parts of the EDT. In earlier work [Pope and Naish, 2003b] we tried to

solve this problem by using the result of the original call as an indicator of the level

of demand. Given a copy of the function and its arguments, a new application can

be constructed and called, such that its result is evaluated up to, but not exceeding

its previous state. There are a couple of problems with this solution: the result

is not necessarily an accurate reflection of how much work is done at a node in

the EDT because a large part of the result can come from argument values, and the

implementation is difficult without extensive support from the runtime environment.

The implementation described in this section avoids the issue by re-executing the

program each time from the beginning, just like Freya [Nilsson, 1998]. This has

an obvious performance penalty because, in most cases, re-execution performs more

work than necessary. In future work we will revisit this problem, perhaps by using

the sequential numbering of nodes as a means to measure and control how much

work is needed to re-generate a sub-tree.

The value of a CAF is saved after the first time it is evaluated. Subsequent

references to the CAF get the value immediately without causing the CAF to be

evaluated again. All nodes in the EDT appear underneath main, which is a CAF. To

re-execute the program it is not sufficient to merely call main again, since its result is
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saved. Therefore it is necessary to revert main (and all other CAFs) to their initial

state before the program can be re-executed. This cannot be done from within

Haskell, so it requires special support from the runtime environment. With GHC

this can be achieved with dynamic loading via a tool called hs-plugins [Pang et al.,

2004]. The object code of the debuggee (including library imports) is dynamically

loaded into the debugging executable. Just before re-executing the debuggee its

object code is re-loaded, which sets all CAFs back to their unevaluated state.

Re-executing a program requires all parts of the computation to be run again, in-

cluding I/O operations. However, many I/O operations cannot be safely re-executed,

simply because they change the state of the world in irrevocable ways. It is not fea-

sible to re-set the state of the world back to its original value before running the

program again; that would require a time machine! Somogyi [2003] solves this prob-

lem in the declarative debugger for Mercury by making primitive I/O operations

idempotent. In the initial run of the program all I/O primitives are numbered and

their results are saved in a global array. When the program is re-executed, I/O

primitives retrieve their previous result from the table instead of firing another side-

effect. The same solution is employed in buddha using the ioTable, introduced in

Section 7.2.1 for printing IO values.

7.4.3 Implementation

A new type of EDT node is introduced for fringe nodes:

data EDT

= EDT ...

| Fringe { nodeID :: NodeID }

It contains a unique identity just like regular nodes.
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The wrong answer diagnosis algorithm from Figure 3.4 is extended with a new

equation to handle the new type of node:

debug diagnosis [] = ... -- as before

debug diagnosis (Fringe id : siblings)

= do newNode <- materialise id

debug diagnosis (newNode : siblings)

debug diagnosis (node : siblings) = ... -- as before

materialise :: NodeID -> IO EDT

materialise node = ...

materialise re-executes the program and collects nodes from the sub-tree whose

root node has identity id. The materialised sub-tree is hereafter called the target.

Debugging resumes as usual once the target has been constructed.

The most complex part of the implementation is deciding which nodes to keep

when the debuggee is executed. Each node in the EDT is uniquely identified by a

number, and each node gets the same identity each time the program is run (as-

suming the program is executed deterministically). A global variable called rootID

records the identity of the root node for the target:

rootID :: IORef NodeID

The value of rootID is set by materialise before the debuggee is executed.

Nodes are materialised if they match one of two conditions:

1. The identity of the node is equal to rootID. This node is called the target

root.

2. The node is a descendent of the target root, within the depth bound.

Fringe nodes are created when a descendent of the target root appears at a depth

equal to the depth bound.
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The Context type is extended to indicate whether a node’s context is inside or

outside the target:

type Depth = Natural -- unsigned integer

data Context

= Pre

| In Depth (IORef [EDT])

| Post

Pre means the target root has not been found but it might be found in a subtree

of the node. In means the target root has been found and the node is within the

target. Post means that the target root has been found and the node is outside the

target. Contexts change from Pre to In at the target root, and from In to Post at

the fringe. The first argument of In records how deep the node is from the target

root, and the second argument is a mutable list of sibling nodes.

Another global variable, called top, records the target root:

top :: IORef [EDT]

There is only ever one target root, but the code is somewhat simpler if top is treated

as a list of sibling nodes. materialise passes the first (and only) node in this list

back to the debugger when re-execution is complete.

As before, nodes are constructed by call (see Section 5.4). Its definition is

modified to support selective materialisation, by splitting it into three equations,

one for each kind of context.

The first equation of call handles Pre contexts:

call Pre name args body

= unsafePerformIO $ do

id <- nextCounter

start <- readIORef rootID

if start == id

-- this is the target root node, depth = 1
then createNode 1 id name args top body

-- this is not the target root
else return (body Pre)
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If the node is the target root then it is materialised and inserted into top, otherwise

the Pre context is propagated downwards to its children.

Nodes are constructed by createNode, in a similar fashion to the original version

of call:

createNode :: Depth -> NodeID -> String -> [Value] ->

IORef [EDT] -> (Context -> a) -> IO a

createNode depth id name args ref body

= do children <- newIORef []

let result = body (In depth children)

let node = EDT { ... } -- as in the original version of call
insertInSiblings node ref

return result

The main difference is that it takes a depth value as an argument, and it supplies

an In context to the body of the function (as indicated by the underline).

The second equation of call handles the In context:

call (In d ref) name args body

= unsafePerformIO $ do

id <- nextCounter

if d == maxDepth

then fringeNode id ref body

else createNode (d+1) id name args ref body

If the depth of the node, denoted by d, is equal to the depth threshold, a fringe node

is created, otherwise the node is materialised at depth ‘d+1’, and inserted into its

list of sibling nodes. Fringe nodes are created like so:

fringeNode :: NodeID -> IORef [EDT] -> (Context -> a) -> IO a

fringeNode id ref body

= do let result = body Post

let node = Fringe { nodeID = id }

insertInSiblings node ref

return result

The children of a fringe node are passed a Post context indicating they are beyond

the depth bound.
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The third equation of call handles the Post context:

call Post name args body

= unsafePerformIO $ do

nextCounter

else return (body Post)

Post contexts are simply propagated downwards, which makes them the cheapest

context to handle. Note that it is still necessary to update the global counter to en-

sure that all nodes get the same identity regardless of whether they are materialised

or not.

The scheme described so far works for nodes which correspond to function ap-

plications but there is a problem with CAFs. Nodes for CAFs are created once

and shared between multiple references (see Section 5.5). The body of a CAF must

not depend on the value of its context argument — if it did, sharing would be lost.

As a consequence, when a CAF is evaluated it is not known whether it will be a

descendent of the target root, and it is not known at what depths it will appear in

the EDT. Therefore the method of passing depth information down through context

arguments does not work for CAFs.

There are numerous ways to tackle this problem. We adopt a simple technique

that appears to work well in practice. All CAFs appear at depth zero. When a CAF

is evaluated, its sub-tree is speculatively materialised up to the depth bound. If the

CAF is a child of some node within the target then its EDT is retained, otherwise

it is garbage collected.

A fourth kind of context is added for speculative EDT construction:

data Context

= ...

| Speculate Depth (IORef [EDT])

Speculate contexts are only generated by CAFs. Nodes for CAFs are constructed

by constant as before (see Section 5.5):

constant :: String -> (Context -> a) -> (Context -> a)

constant name body = ref (valueAndNode name body)
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Below, the definitions of valueAndNode and ref are modified to suit the selective

materialisation of nodes. Children of a CAF node start at depth one. If the node is

the target root, it is inserted into top:

valueAndNode :: String -> (Context -> a) -> (a, EDT)

valueAndNode name body

= unsafePerformIO $ do

children <- newIORef []

id <- nextCounter

start <- readIORef rootID

if id == start

-- it is the target root
then do let result = body (In 1 children)

let node = EDT { ... } -- as before
insertInSiblings node top

return (result, node)

-- it is not the target root
else do let result = body (Speculate 1 children)

let node = EDT { ... } -- as before
return (result, node)

The node for a CAF is only inserted into the rest of the EDT when it is referred to

from an In or Speculate context:

ref :: (a, EDT) -> Context -> a

ref (value, node) (In d ref)

= unsafePerformIO $ do

insertInSiblings node ref

return value

ref (value, node) (Speculate d ref)

= unsafePerformIO $ do

insertInSiblings node ref

return value

ref (value, node) other = value

The definition of call must be updated to support Speculate contexts. They

are handled in much the same way as In contexts, except that when the fringe is

encountered, the children nodes are passed a Pre context instead of an Out context.

This is because the target root can be a descendent of a speculated CAF, and it

might be found outside the depth bound.
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Figure 7.7: Transitions between contexts.

The transitions between contexts are illustrated in Figure 7.7. The transitions

labeled a and d are starting points because they originate from CAFs. All other

transitions are performed by call. The transition labeled j is dashed because it

indicates a possible optimisation. The target root is only found once. Therefore

all Pre contexts can be changed to Post contexts after the target root has been

identified. This has a potential to improve the running time of the program because

Pre contexts cause call to check for the target root, which makes them less efficient

than Post contexts.

The functions for generating trusted nodes are modified in a similar way to call

and constant. For brevity they are not shown here.

One final point deserves a mention. Constants can be defined in local declara-

tions, such as qs in scanr from the Haskell Prelude:

scanr f q (x:xs)

= f x (head qs) : qs

where

qs = scanr f q xs

qs is not a global constant because it depends on lambda-bound variables from the

head of scanr, but it is constant when the values of those variables are fixed — one
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could say it is constant within its context. Note that qs is used twice in the body

and it is important for efficiency that those two uses are shared. Also note that qs

appears in the middle of a recursive dependency:

scanr → qs → scanr

If qs were treated like a top-level CAF there would be a problem. Suppose that

the first call to scanr appears inside the materialised EDT. If qs were treated as

a CAF it would have a depth of zero, which would mean that the recursive call

to scanr would have a depth of one. If one is less than the depth bound (which

is most likely), all the recursive calls to scanr in a chain would appear within the

materialised EDT.

This problem can be avoided by transforming local constants as if they were

function calls, except that their context is not passed in as an argument, but bound

in an enclosing scope. So qs is transformed like so:

qs = call c "qs" [] (\i -> ...)

The context value c is bound in the enclosing scope by the transformation of scanr.

References to qs in the rest of the transformed code use its name only, they do not

pass a context argument (compare this with global constants which do get passed a

context argument).

Transforming local constants in this way means that inter-constant dependency

information is not reflected in the EDT. Suppose that scanr is re-written to include

another local definition:

scanr f q (x:xs)

= f x (head ps) : ps

where

ps = qs

qs = scanr f q xs

The transformation will make qs a child of scanr rather than ps. If qs is buggy, but

the wrong answer diagnosis visits ps before qs, the bug will be mis-diagnosed with

ps. In fact, this is exactly the same problem identified for global constants, which

was discussed in Section 5.5. In the case of global constants it was argued that the
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EDT should reflect inter-constant dependencies. The solution presented here goes

against that argument. However, the problems identified for global constants are

not as serious for local constants. In particular local constants are always defined in

the same module, so it is easy to sort them into dependency order.

7.4.4 Performance

We now consider the time and space overheads introduced by the debugger using

piecemeal EDT construction. To gauge these costs the full debugging transformation

was applied to the suite of five example programs. Measurements were taken based

on the construction of the topmost target EDT, at varying depth thresholds. Since

we only constructed the topmost target EDT, each program was executed only one

time to completion. This provides us with an idea of what the time and space costs

are between the start of program execution and the point when the debugger can first

begin to explore the EDT. Similar costs will be incurred for subsequent re-executions

of the program as additional target sub-trees are generated. It must be noted that

the actual costs for any given program re-execution will depend on the size of the

target tree, and that can vary considerably with the depth threshold. Therefore

these figures should be considered only as a guide. All higher-order functions, except

those within the IO type, were transformed using the intensional style, and IO tabling

was enabled. All functions, including those in standard libraries, were considered

suspicious.

Figure 7.8 illustrates the growth of EDT size (in nodes) as the depth bound

increases. Pancito, Raytrace and Mate exhibit an exponential growth, whereas

Cacheprof and Prolog exhibit a near linear growth.

Figure 7.9 illustrates the growth of memory usage (relative to the original pro-

gram) as the depth bound increases. Memory usage should grow proportionally to

the size of the target EDT. Comparing Figure 7.9 to Figure 7.8 suggests that this

is indeed the case.

Figure 7.10 illustrates the growth of running time (relative to the original pro-
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Figure 7.8: EDT size versus depth bound.

gram) as the depth bound increases. To avoid the prohibitive cost of garbage collec-

tion on the EDT (caused by the use of IORefs) the initial minimum heap for each

program was set to 100MB. The overhead of debugging is close to constant when

the memory required by the transformed program remains within that limit. This

is expected because the debugging transformation introduces only a constant cost

for each reduction of a user defined function. As the depth of the tree increases, the

cost rises because there are more nodes in the target EDT, and materialised nodes

require slightly more work than non-materialised ones. When the program exceeds

the 100MB limit the time usage begins to climb rapidly because the garbage col-

lector is invoked more often which triggers its pathological behaviour with mutable
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data structures. This happens in the mate example at a depth between 25 and 35

nodes, which is the same point where its memory usage starts to grow rapidly. It

is not clear why prolog enjoys a significantly smaller time overhead than the other

programs. One factor appears to be that its EDT grows at the slowest rate.

7.4.5 Improvements

It is important to reduce the number of times the debuggee must be re-executed,

which means striving for the largest depth bound which produces a target tree which

can still fit in memory. Figure 7.11 shows the maximum EDT depths for each of

the example program runs. This illustrates that in practice we can expect a diverse
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Figure 7.10: Running time (relative to the original program) versus depth bound.

range of EDT shapes, from long sticks to dense bushes. For sufficiently complex

programs the same kind of diversity will appear amongst the subtrees of a single

EDT. The decision as to what is the most suitable depth threshold is inherently a

dynamic one.

There are two approaches proposed in the literature for dynamically determining

the best size to materialise parts of the EDT: query distance by Nilsson [1998] for

Freya, and the ideal depth strategy by MacLarty and Somogyi [2006] for Mercury.

Query distance optimises the materialised EDT for a top-down wrong answer

diagnosis algorithm. The query distance of a node N measures how many steps are

required to get from the target root to N using a top-down left-to-right traversal.
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program max. depth

Pancito 5011
Cacheprof 107007
Raytrace 62507
Prolog 6996
Mate 139

Figure 7.11: Maximum depth of the EDT for the example programs.

Nodes are materialised until some threshold value is reached, based on the amount

of memory used by the target. When the threshold value is over-stepped, a prun-

ing process is invoked. Pruning deletes nodes from the target until the memory

requirements are back within the allowed limit. Nodes are deleted in order of their

query distance, in largest to smallest fashion. This ensures that the target retains

the nodes which are most likely to be visited next by the debugger. The size of the

target is computed by the garbage collector, which means that the debugger must

be tightly integrated with the runtime environment.

The ideal depth strategy calculates exactly how many levels can be generated

in a subtree such that some threshold number of nodes (T ) is not exceeded. The

user of the debugger chooses T to be as large as possible such that any materialised

subtree of that size will not exhaust the available memory resources. In practice T

is chosen based on previous experience and experimentation. An initial small depth

threshold is chosen for the first execution of the debuggee. The fringe nodes of the

target store the ideal depth of their subtree, which tells the debugger how deep to

materialise that tree if it is eventually needed. The ideal depth for each subtree is

calculated as follows. An array A of counters, indexed by node depths, is allocated.

All counters are initially zero. The size of A is equal to T , since that is the deepest

a materialised tree can be without exceeding size T (which happens if the tree has

a branching factor of one at each level). Function calls which occur at depth d ≤ T

beyond the fringe increment the counter in A[d]. The ideal depth is then equal to
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the maximum value of D such that:

D∑

i=1

A[i] ≤ T

An important part of the implementation in the Mercury debugger is that only

one instance of A is needed, therefore the additional memory requirements are

bounded by T . This is possible because Mercury is a strict language. Function

calls proceed in a depth-first, left-to-right manner, so that the computation of the

result of one fringe node is completed entirely before the next fringe node is encoun-

tered. In a lazy language the temporal order of function calls can be interleaved

amongst the subtrees of many fringe nodes, which means that it is not possible to

use just one instance of A. Instead, every fringe node would require its own copy of A

simultaneously. If there are N fringe nodes, the additional memory requirements are

N × T (which approaches T 2 as the average branching factor increases). MacLarty

and Somogyi [2006] report that for many programs T should be set to something

like 20000 (we expect something of similar magnitude for Haskell programs). For

large values of N the required memory is likely to undo any benefits gained from

using piecemeal EDT construction.

A possible solution is to approximate A with a smaller array such that the indices

represent depths which grow faster than linear, for instance a quadratic function.

That is, index one represents level one, index two represents levels two to four, index

three represents levels five to nine, and so on. With a quadratic approximation the

size of A is bounded by
√

T . Each fringe node would have its own copy of A, so

the total memory requirements would be bounded by N ×
√

T , which is T 3/2 in

the worst case when N = T . If T = 20000, the worst case would require nearly

three million array elements across all the copies of A. With 32 bit integer counters,

this would require at least twelve megabytes of memory (assuming an efficient array

representation). In practice the worst case is extremely unlikely to happen, so the

average memory requirements are expected to be much less.

Another consideration is the cost of the function which converts real depth values
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into indices of A. This function must be applied at every call which is beyond the

fringe but within a depth of T , which could be a very large number of times, therefore

it must be as cheap as possible. For the quadratic function, the conversion is not

cheap:

index :: Int -> Int

index depth = ceiling (sqrt (fromIntegral depth))

Fortunately there is a simple solution to this problem. The index function can be

pre-computed and stored in an array (Pre), such that:

Pre[i] = index i, for each i ∈ 1 . . . T

For a given depth d, its counter in A can be incremented like so (using pseudo C-style

array indexing and increment syntax):

A[Pre[d]]++

which is more efficient than applying index at every increment. The cost is an

additional T integers needed for the elements of Pre. To save space, each integer

could probably be 8 bits, since the range of indices for A is bounded by
√

T , which

is unlikely to bigger than 28.

A quadratic function is just one possible approximation to the linear array. The

choice of function is based on a tradeoff between the memory used by all the copies

of A versus accuracy in the ideal depth calculation. The larger the error in the ideal

depth the more times the debuggee will need to be re-executed. By pre-computing

the index function it is possible to employ much more complex approximations to

the ideal depth bound. For instance, instead of a quadratic, it might be useful for

the function to be linear up to some depth, and then perhaps a polynomial from

that point onwards. There is much room for experimentation in this regard.

The above method is conservative in that it will never cause a subtree to be built

with more than T nodes, however, in some cases it might be overly conservative.
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For instance, suppose that T = 1000, and that the ideal depth in some instance is

12. The approximation technique might find that at depth 9 the tree has 300 nodes,

but at 16 (the next known data point) the tree has 9000 nodes. The conservative

approach is to materialise the tree up to depth 9, but this results in 70 percent fewer

nodes than desired. It would not be reasonable to go to depth 16 because this would

result in far too many nodes in the tree. It is possible to reduce the error in the

approximation by interpolating a curve through the data points. In practice a small

positive error in the number of nodes collected is likely to be acceptable, since the

value of T is inherently an approximate figure.

Counting EDT nodes provides a reasonable bound on the memory requirements

of the debugger in many cases because each node corresponds to a function call, and

each function call can only allocate a constant amount of memory. Often sub-parts

of data structures are shared between nodes in the target, so the cost of keeping

the whole structure in memory is amortised. However, this approximation breaks

down when a data structure grows well beyond the boundary of the target. Large

structures can arise even in programs which use only a constant amount of memory

under normal execution, because only a constant amount of the structure is live

at any one time. In the worst case the top node in the EDT refers to a large

structure which cannot fit into the available memory of the machine. For example,

this situation can arise in buddha for programs which perform a long recursive chain

of IO. The lambda abstractions inside the IO type form a long linear structure which

is kept in memory because the node for main contains a pointer to topmost part of

the structure.

The most obvious solution, which is frequently suggested in the literature, is to

truncate the data structures which are referred to by the EDT once they grow beyond

a certain size. The problem with this approach is that the truncated parts might

be important in the diagnosis of a bug. The next refinement is to use truncation

but allow the missing parts to be reconstructed by re-executing the program again.

This can be achieved within the piecemeal construction technique by expanding the
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EDT such that data constructor applications and lambda abstractions get their own

nodes. It remains to be seen whether this can be made sufficiently time efficient.

Another tack is to (partially) abandon the top-down search through the EDT.

For instance it is possible to start by applying the wrong answer diagnosis algorithm

to subtrees which are found deep in the EDT. If no bugs are found in those nodes,

the debuggee must be re-executed so that debugging can resume with nodes which

are higher in the EDT, continuing upwards to the root if necessary. The benefit

is that, generally speaking, nodes which are deeper in the EDT will tend to hold

onto data structures which are relatively smaller than nodes which are higher in the

EDT. The trouble with this approach is that it is very difficult to decide how deep

to start in the EDT. One advantage of the top-down approach is that the discovery

of correct nodes can eliminate large amounts of the search space in one step. A

bottom-up approach loses some of this advantage, which might result in many more

nodes being visited by the debugger.

An even more radical idea, which does not appear to have been previously inves-

tigated, is to combine incremental program execution with declarative debugging.

A rough sketch follows. Initially the debuggee is executed for a short period, which

produces a partial EDT. Declarative debugging is applied to that tree, and if we

are lucky, a buggy node can be found, which will eventually lead to a diagnosis.

Otherwise the debuggee is executed a bit further, producing more of the EDT, fol-

lowed by more debugging, and so on. To be effective, some parts of the EDT which

have already been visited must be discarded at each step. One way to do this is to

make the full term representation of thunks visible in reductions. If a reduction is

considered correct, but it contains some thunks, the node containing the reduction

and its subtree can be discarded, but the thunks must be tracked by the debugger. If

those thunks are eventually reduced, the debugger must revisit them to see whether

they contain any bugs. An optimisation is to stop tracking a thunk if it becomes

garbage before being reduced. The following example illustrates a possible scenario.

Suppose that the debuggee contains a function for producing a list of primes from
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some number down to zero. After an incremental execution of the debuggee the

oracle might be faced with this reduction:

primesFrom 10 => 7 : 5 : primesFrom 4

This is correct providing that the underlined thunk is correct. The debugger can

discard the current node, and its subtree, but it must track the thunk in case it

actually turns out to be erroneous. In some cases there will be too many thunks in

a reduction and/or the term representation of thunks will be too unwieldy for the

oracle to make a judgement. In that case the debugger will have to hold onto the

reduction, and allow the debuggee to be executed further in the hope that some of

the thunks will be turned into WHNFs.

There are two main attractions of the incremental approach. First, the debuggee

only needs to be executed once, and in some cases a partial execution may be

sufficient. Second, reductions with large data structures can be debugged in smaller

steps, which will allow memory to be recycled as debugging proceeds. However, it

is not without problems. Printing the term representation of thunks is likely to be

a technical challenge, especially for a debugger based on program transformation.

Then there is the question of how to pause and resume the debuggee — though

perhaps this can be achieved on top of a threaded execution environment. But the

most pressing issue of all is how to design the user interface so that debugging is

not too confusing for the user. The temporal evaluation of tracked thunks is likely

to be spread across numerous subtrees of the EDT, and it may be difficult for the

user to follow the order in which reductions are visited. On balance it seems that

the scalability benefit of an incremental approach has the potential to outweigh the

usability problems, making this an interesting topic for further research.

7.5 Final remarks

The current public version of buddha does not support piecemeal EDT construction

because our implementation relies on hs-plugins to re-set CAFs to their original
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state, but hs-plugins does not support code compiled for profiling. As noted in

Section 6.4, profiling is currently needed to obtain printable representations of data

constructors in GHC. We are confident that this can be resolved by modifying bud-

dha so that data constructor names are encoded in the transformed program, thus

removing the dependency on profiling.
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Related Work

Constructing debuggers and profilers for lazy languages is recognised as

difficult. Fortunately, there have been great strides in profiler research, and

most implementations of Haskell are now accompanied by usable time and

space profiling tools. But the slow rate of progress on debuggers for lazy

functional languages makes us researchers look, well lazy.

Why no one uses functional languages

[Wadler, 1998]

8.1 Introduction

E
very so often a question is posted to one of the Haskell discussion groups

on the Internet to the effect of “How do you debug a Haskell program?”

When Wadler wrote about “the slow rate of progress on debuggers for

lazy functional languages”, there were no debuggers for Haskell. That was several

years ago, and happily the rate of progress has increased. Several debugging tools

have emerged, with varying approaches to explaining the behaviour of programs.

This chapter provides an overview of the most important developments in this area.
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8.1.1 Outline of this chapter

The rest of this chapter proceeds as follows. Section 8.2 discusses the most basic

of all debugging techniques, diagnostic writes. Section 8.3 considers declarative

debugging, starting with the original work in Prolog, then moving to functional

languages. Section 8.4 looks at reduction tracing, with an emphasis on Redex Trails.

Section 8.5 shows how a step-based tracing debugger can be built on top of optimistic

evaluation. Section 8.6 discusses a framework for building many different kinds of

debugging tools, based on a special operational semantics for program monitoring.

Section 8.7 covers randomised testing. Section 8.8 classifies all the different tools

according to their type and implementation, and summarises all their features.

8.2 Diagnostic writes

The most basic approach to debugging, in any language, is the diagnostic write.

A diagnostic write is a print statement placed at a carefully chosen point in the

program in order to reveal its flow of execution or show some intermediate part of

its state. The enormous popularity of this technique is largely due to its simplicity.

Everything is provided by the programming environment; no other tools are required.

It is desirable to allow diagnostic writes anywhere in the program that com-

putation is performed. In imperative languages this requirement is easily fulfilled.

The basic building blocks of those languages are (possibly side-effecting) statements.

Squeezing additional side-effects in between existing ones is not difficult and fits with

the underlying paradigm. Diagnostic writes are not so straightforward in Haskell,

because side-effects are difficult to manage with non-strict evaluation.1 Input and

output must be properly structured within the I/O monad, which limits the places in

which print statements can be inserted into a program. Rewriting purely functional

code to use the I/O monad is rarely a good option. It imposes a rigid sequential

structure on the code where it is not otherwise needed, and it is simply too much

1The difficulty of using diagnostic writes in pure languages is a well known and long standing
problem, for example see the extensive discussion in [Hall and O’Donnell, 1985].
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effort for what should be a throw-away piece of programming.

8.2.1 The trace primitive

Most Haskell implementations come with a primitive tracing function, called trace,

for adding diagnostic writes anywhere in a program:

trace :: String -> a -> a

Given a string argument, it returns the identity function, but behind the scenes it

causes that string to be printed to the output device. In effect, trace is just a

convenient “hack” to circumvent the type system.

It is quite clear that trace is a poor solution to the problem. If and when a

diagnostic write will be performed is difficult to predict from the structure of the

program source. The documentation accompanying Hugs’2 implementation of trace

shares this view:

[trace] is sometimes useful for debugging, although understanding the

output that it produces can sometimes be a major challenge unless you

are familiar with the intimate details of how programs are executed.

Observer effects are also problematic. Often diagnostic writes are used to display

the intermediate value of the program state, such as a local variable in a function call.

To use trace for this task the value must first be turned into a string. This is usually

not difficult, but the act of printing the string often causes the underlying value to

be entirely evaluated. This could cause more evaluation than what would normally

happen in the program. At best this will mean extra work for the computer, at

worst it will result in non-termination or a runtime error. To make matters worse,

the extra evaluation might trigger more calls to trace which are nested inside the

value being printed. This problem was encountered when a trace-like facility was

added to the Chalmers Lazy ML compiler [Augustsson and Johnsson, 1989]:

2www.haskell.org/hugs
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it generally turned out to be very difficult to decipher the output from

this, since quite often (due to lazy evaluation) the evaluation by trace

of its arguments cause other instances of trace to be evaluated. The

result was a mish-mash of output from different instances of trace.

Another problem is that abstract types cannot be easily mapped into strings:

functions are a prime example. This is particularly annoying in Haskell where higher-

order programming is commonplace. A debugger that cannot display all the values

of the language is severely hampered.

8.2.2 The Haskell Object Observation Debugger

The limitations of trace are addressed by the Haskell Object Observation Debugger

(Hood) [Gill, 2001]. Hood is implemented as a Haskell library which provides a

diagnostic writing facility called observe. The advantages of observe over trace

are twofold:

1. observe preserves the evaluation properties of the program: values are printed

in their most evaluated state and no more, and calls to observe do not cause

their subject values to be evaluated any more than they would have been in

an observe-free execution of the program.

2. observe can handle more types than trace; most importantly it can display

functional values.

The type of observe is similar to that of trace:

observe :: Observable a => String -> a -> a

But the behaviour of the two functions is quite different:

• trace can only print a value if it is first turned into a string, it does not look

at its second argument at all.

• observe records the evaluation progress of its second argument directly, the

first argument (a string) is merely a tag for the observation.
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It is desirable to have just one function for observing all values, however Haskell’s

type system does not allow one function definition to pattern match against a given

argument at different types. For example, the following definition is ill-typed:

toString :: a -> String

toString True = "True"

toString False = "False"

toString () = "()"

toString [] = "[]"

toString (x:xs) = toString x ++ ":" ++ toString xs

...

Hood uses a type class to work around this problem, allowing observe to be

implemented in a type-dependent manner, hence the ‘Observable a’ constraint in

its type signature. Only types that are instances of the Observable class can be

observed. Instances for all the base types are provided by the library, and it is

relatively easy to write instances for user defined types.

Calls to observe are simply wrapped around expressions of interest. The fol-

lowing example shows how to observe an argument of the length function:

length (observe "list" [1,2,3])

which gives rise to the following observation:

-- list

_ : _ : _ : []

Underscores indicate terms that were not evaluated by the program. This particular

observation shows that length demands the spine of a list but not its elements.

A simple implementation of Hood

When a data constructor of an observed value is evaluated, a side-effect records that

event in a global mutable table. When the value is a structured object, such as a

list, observe propagates down through the structure to capture the evaluation of

its sub-parts. To ensure that observe does not change the meaning of the program
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(other than by printing observations at the end), the side-effects must be hidden

from the rest of the program.

Hood attaches observation hooks to pure computations using side-effects in much

the same way as we do in buddha.

First, we consider the encoding of observation events. In a very simple implemen-

tation only two events are needed: the start of a new observation, and the evaluation

of a data constructor. Start events allow more than one instance of a call to observe

in any given program run. For easy identification each start event is tagged with

a string. Constructor events record the evaluation of a data constructor, giving its

name and arity. The following type encodes what kind of event has occurred:

data Kind = Start String | Cons String Int

It is also necessary to relate events with one another. A constructor will always

be the child of another event, either a start event, if it is the outermost constructor

of a value, or another constructor, if it is internal to the value. Some constructors

have multiple arguments making it necessary to record an index for each of their

children. This relation is represented as a list of integers:

type Index = [Int]

The index of a start event is always a singleton list containing a unique integer, thus

all start events can be distinguished. The index of each constructor event is some list

of integers of length greater than one. Parent-child relationships are recorded based

on positional information. The index [12,1] is the first child of the start event

numbered twelve. In fact, all start events have just one child, which is always at

position one. A more interesting index is [12,1,3], which identifies the third child

of the constructor described by the previous event. Combining kinds and indexes

gives the full event type:

data Event = Event Index Kind
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All the events in a program run are recorded in a global mutable list:

events :: IORef [Event]

events = unsafePerformIO (newIORef [])

updateEvents :: Event -> IO ()

updateEvents event

= do es <- readIORef events

writeIORef events (event : es)

A unique supply of start event numbers is provided like so:

uniq :: IORef Int

uniq = unsafePerformIO (newIORef 0)

newUniq :: IO Int

newUniq = do

u <- readIORef uniq

writeIORef uniq (u + 1)

return u

The following helpful utility, called postEvent, takes an event and a value, adds

the event to the global table and returns the value unchanged:

postEvent :: Event -> a -> a

postEvent e x

= unsafePerformIO $ do

updateEvents e

return x

This allows us to write an observe-like facility for Ints:

observeInt :: Int -> Index -> Int

observeInt int index

= postEvent thisEvent int

where

thisEvent = Event index (Cons (show int) 0)

Given an Int and an Index, observeInt constructs a new event, posts it, and

returns the Int. The event kind ‘Cons (show int) 0’ records the string represen-

tation of the integer and the fact that it has zero arguments. The Index argument

says where this particular Int occurs inside a given observation.
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Lists of Ints can be handled in a similar way:

observeListInt :: [Int] -> Index -> [Int]

-- the empty list
observeListInt list@[] index

= postEvent thisEvent list

where

thisEvent = Event index (Cons "[]" 0)

-- the non-empty list
observeListInt (x:xs) index

= postEvent thisEvent obsList

where

thisEvent = Event index (Cons ":" 2)

obsList = observeInt x (index ++ [1]) :

observeListInt xs (index ++ [2])

Start events are created like so:

startObsListInt :: String -> [Int] -> [Int]

startObsListInt label list

= unsafePerformIO $ do

u <- newUniq

let rootIndex = [u]

updateEvents (Event rootIndex (Start label))

return (observeListInt list (rootIndex ++ [1]))

Each call to startObsListInt creates a unique “root index” value and adds a start

event to the global table. Observations on the list are performed by observeListInt,

which has an index value of ‘rootIndex ++ [1]’.

Observations are displayed at the end of the program using the runO function:

runO :: IO a -> IO ()

runO io = do

io

es <- readIORef events

putStrLn (prettyPrintEvents es)

The typical use of runO is to wrap it around the body of main. In this way the

argument io corresponds to the “original program”, which is run to completion first,

after which the global event table is read and pretty printed, via prettyPrintEvents

(which is not defined here). Wrapping the body of main with runO ensures that all
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length (startObsListInt "list" [1,2,3])

- Post start event with index [0] and label "list"

length (observeListInt [1,2,3] i01)
- Post constructor event for : with index [0,1]

length (observeInt 1 i011 : observeListInt [2,3] i012)

1 + length (observeListInt [2,3] i012)
- Post constructor event for : with index [0,1,2]

1 + length (observeInt 2 i0121 : observeListInt [3] i0122)

1 + 1 + length (observeListInt [3] i0122)
- Post constructor event for : with index [0,1,2,2]

1 + 1 + length (observeInt 3 i01221: observeListInt [] i01222)

1 + 1 + 1 + length (observeListInt [] i01222)
- Post constructor event for [] with index [0,1,2,2,2]

1 + 1 + 1 + length []

1 + 1 + 1 + 0

...

3

Figure 8.1: Evaluation of an observed expression.

possible updates to the global event table are performed before the observations are

printed.

Figure 8.1 illustrates the evaluation of the following expression as a series of term

reductions:

length (startObsListInt "list" [1,2,3])

The figure shows how the side-effects of observation are interwoven in the lazy eval-

uation of the expression.

Underlining indicates which expression is to be reduced next. A remark under-

neath an expression indicates what, if any, side-effects are triggered by the reduction
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step. Within the expressions, index numbers are written as in instead of list nota-

tion. For example, i01221 would be encoded in Haskell as the list [0,1,2,2,1].

The reduction sequence begins with the posting of a Start event, and continues

with interleaved reductions of calls to observeListInt and length. It is interesting

to note how the observation calls are propagated down the list. Most importantly

the observations of the list elements never occur because they are never demanded

by the reduction. Only the parts of a value that were needed by the program are

recorded. It is also worth pointing out that an event is posted for a constructor only

the first time it is demanded. Future references to the constructor do not trigger

any more side-effects.

At the end of the reduction the global state will contain the following list of

events:

[ Event [0] (Start "list")

, Event [0,1] (Cons ":" 2)

, Event [0,1,2] (Cons ":" 2)

, Event [0,1,2,2] (Cons ":" 2)

, Event [0,1,2,2,2] (Cons "[]" 0)

]

Printing the observations in a more comprehensible manner is straightforward.

One major problem with this simple version is that it requires the definition of

an observation function for every monomorphic type. Hood avoids this redundancy

by overloading observe using a type class.

Functions are also observable in Hood, however they cannot be handled in the

same way as first-order values because they are abstract — there are no constructors

to pattern match against. Hood employs a similar technique to buddha, by recording

each application of a monitored function.3 For example, if inc is a function that

increments its argument, it is possible to observe the use of the function in the

following expression:

map (observe "fun" inc) [1,2,3]

3The extensional style of printing functions in buddha was inspired by Hood.
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If all the elements of the resulting list are needed by the program, the following

observation will result, using an extensional representation:

-- fun

{ 3 -> 4

, 2 -> 3

, 1 -> 2

}

The types of the function’s arguments and result must also be instances of the

Observable class.

8.2.3 Graphical Hood

In the version of Hood described above, all observations are printed statically at

the end of the program, by way of runO. This kind of printing misses out on

one interesting piece of information which is contained in the table of events: the

order of evaluation. The event table is ordered by the time at which events occur

in the program. Static printing of this information shows what constructors were

demanded, and where they occurred inside other values, but it does not show when

they occurred. In the original paper on Hood [Gill, 2001], Gill described a more

advanced back end that can give a dynamic view of the observations by revealing

their order of appearance in the table. Graphical Hood (GHood) is an extension

of this idea that uses a tree-based graphical display to show observations that also

reveals when they occur relative to one another [Reinke, 2001].

GHood employs observe in exactly the same way as Hood. The advantage of

GHood is that the dynamic behaviour of the observed value can be played like an

animation (forwards and backwards). Values are drawn as trees in the obvious way,

and thunks are drawn as red boxes. As parts of the value are demanded, the tree

expands with thunks being replaced by constructors: non-nullary ones giving rise to

sub-trees. Figure 8.2 shows the GHood interface on a small example.

An interesting application of this animation is the illustration of space leaks. A

particular problem with non-strict evaluation is the creation of long-living thunks,
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Figure 8.2: The GHood interface.

as noted in Section 2.2.5. Potential space leaks can be identified with GHood by

taking note of the thunks that remain untouched for relatively long periods of time.

8.2.4 Limitations of diagnostic writes

Diagnostic writes are a cheap way to probe the behaviour of programs, but their

effectiveness is limited in a couple of ways:

• Programs must be modified by hand. This tends to obscure the code and

increases the maintenance complexity since diagnostics are usually only needed

in development and should not appear in the deployed program. Adding and

removing diagnostics can be troublesome and the additional restructuring of

the program needed can be a source of errors itself.

• The main faculty provided by diagnostics is vision: the ability to see what value

a variable has, or which parts of the program are executed. But seeing does
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not necessarily equate with understanding. Though it is useful to know what

value a variable is bound to at some point, it is more useful and important for

debugging to know why it is bound to that value. The reason why a variable

has a given value, or why a function returns a particular result is often related

to an intricate web of causation that involves numerous parts of the program

source. Diagnostic writes do not help the user to systematically decide what

information is relevant in explaining the (mis)-behaviour of the program, so

we must resort to trial and error to unravel the web of causation.

8.3 Declarative debugging

Shapiro was the first to demonstrate how to use declarative semantics in a debugging

tool [Shapiro, 1983]. He called the process Algorithmic Program Debugging, and

proposed various diagnosis algorithms for pure Prolog, notably:

1. Wrong answer: a goal (call to a predicate) produces the wrong result for its

given arguments.

2. Missing answer: the set of solutions to a non-deterministic goal does not con-

tain some expected answer.

3. Non-termination: a goal diverges (computes indefinitely).

He also investigated inductive program synthesis as a way of constructing (correct)

programs from the information learned about their intended behaviour during de-

bugging.

Debuggers for functional languages have taken two ideas from Shapiro’s work:

the wrong answer diagnosis algorithm, and the idea of a semi-automated oracle.

Missing answers are not relevant to functional languages because functions are de-

terministic.4 Debugging non-termination remains an open research project.

4Though there are ways of simulating non-deterministic computations in Haskell, such as using
lists to represent multiple solutions [Wadler, 1985]. One could argue that missing answer diagnosis
is suitable for that type of programming.
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Shapiro’s debuggers are constructed as modified meta-interpreters (Prolog pro-

grams that can evaluate Prolog goals). This greatly simplifies their construction and

enhances portability. The reflective nature of Prolog is crucial to his work, as he

notes:

Considering the goals of this thesis, the most important aspect of Prolog

is the ease with which Prolog programs can manipulate, reason about

and execute other Prolog programs.

Modern statically typed languages have not inherited the reflective capabilities of

their ancestors like Lisp and Prolog. Therefore much of the research involved in

adapting Shapiro’s ideas to languages like Haskell has been in replacing the use of

meta-interpretation.

Though his thesis is cast in terms of Prolog, Shapiro notes that the ideas of algo-

rithmic debugging are applicable to a wide class of languages. His requirements are

that the language must have procedures (such as predicates in Prolog and functions

in Haskell), and that computations of the language can be defined by computation

trees, with a “context free” property. The idea is that any sub-tree of a computation

tree can be considered and debugged without regard to its context (i.e. referential

transparency). Impure languages do not exhibit this property because the meaning

of a sub-tree may depend on some external program state. In logic programming it

is natural to use proof trees (or refutation trees as Shapiro calls them) for this pur-

pose [Sterling and Shapiro, 1986], however the same kind of structure is not typical

in functional programming (functional languages have traditionally used operational

semantics, like reduction, to describe the meaning of programs).

Mercury5 is a logic programming language which shares with Prolog a back-

ground in predicate logic and a syntax based on horn-clauses, though unlike Prolog,

it has a strong static type system including mode and determinism information.

Also, Mercury is purely logical in the same sense that Haskell is purely functional,

with similar type-level restrictions on where side-effects may be performed. Most

5www.cs.mu.oz.au/mercury/
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relevant to this discussion is that Mercury comes with a full-featured declarative

debugging environment with the following interesting aspects [MacLarty, 2005]:

• Predicates that perform I/O can be declaratively debugged.

• The EDT is constructed from a lower level program trace. A trace is a linear se-

quence of program events such as call entry, call exit, and for non-deterministic

predicates, failure and retry.

• The EDT is built up to a depth bound to save memory. Pruned sub-trees are

re-generated by re-executing the sub-goal at their root.

• I/O actions are recorded in a table (memoised) upon the first run of the pro-

gram. Their results are retrieved from the table if those actions are needed

by re-execution of a sub-part of the program. This avoids the need to run an

action twice and makes their effects idempotent.

• A user may switch between procedural and declarative debugging in the one

session.

Mercury’s approach to debugging I/O [Somogyi, 2003] has been especially influential

on the design of buddha, as discussed in Section 7.2.

Transferring the declarative debugging ideas from logic languages to Haskell is

complicated by non-strict evaluation (Prolog and Mercury are strict). Strict evalu-

ation simplifies the construction of declarative debuggers because:

• There is an obvious correspondence between the shape of the dynamic call

graph and the EDT.

• Arguments and results of calls do not contain thunks, which makes them easier

to display.

• It is easier to re-execute procedure calls in order to re-generate parts of the

EDT on demand.
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An additional challenge for Haskell is the tendency for programs to make extensive

use of higher-order code. Prolog supports higher-order predicates, but they are

uncurried, and their flattened syntax discourages the kind of “deeply nested function

composition” style of higher-order programming that you often find in functional

languages. A consequence is that support for displaying functional values in logic

debuggers is of less importance than it is in Haskell debuggers, where it is crucial.

Two approaches have been taken to build declarative debuggers for non-strict

functional languages. The first approach is to create a specialised compiler and

runtime environment which builds the EDT internally as a side effect of running the

program. This is exemplified by Freya, a compiler and debugger for a large subset

of Haskell [Nilsson, 1998, 1999]. The second approach is to apply a source-to-source

transformation, producing a program that computes both the original program’s

value and an EDT Program transformation [Naish and Barbour, 1996, Pope, 1998,

Sparud, 1999, Caballero and Rodŕıguez-Artalejo, 2002].

The design of buddha is inspired by both of these ideas. On the one hand,

the method we use to construct the EDT is based in part on the technique used

in Freya. On the other hand, we use program transformation to instrument the

program, instead of instrumenting the runtime environment.

In the next part of this section we look more closely at Freya, and after that

we consider the basic source-to-source transformation schemes proposed in earlier

work.

8.3.1 Freya

Freya is a compiler and declarative debugger for a language quite close to Haskell.

The only major differences are an absence of type classes and I/O.

208



Related Work

For efficiency reasons Freya constructs the EDT at the graph reduction level.

The runtime representation of graphs has a couple of important features to facilitate

debugging:

• All objects have distinct tags. This is useful to recognising sharing and cycles

in values.

• Functions and data constructors are decorated with their name and source

locations. Functions also have links to their free variables. This facilitates the

printing of arbitrary values.

The garbage collector is aware of the EDT, keeping alive references to values that

might later be printed during debugging.

Figure 8.3 illustrates how Freya constructs the EDT for the following small

program:

double x = x + x

start = double (3 * 2)

Refer to Section 2.3.2 to see how graph reduction normally works on this code,

especially Figure 2.3. The graph is drawn as before and EDT nodes are indicated

inside boxes. The graphs are labeled A - D to indicate the order in which the

reduction steps occur. Note that EDT nodes also refer to the arguments and results

of function applications, but to simplify the explanation, they are not shown here. It

is assumed that at the very beginning a node is allocated for start. New nodes are

added to the EDT as each reduction takes place. For example, evaluation proceeds

from graph A to graph B by reduction of the application of double. This event is

recorded by the addition of a node in the EDT situated under the node for start.

The most difficult part is maintaining parent-child relationships between EDT

nodes. Under lazy graph reduction, the context in which an application is created

may be different to the context in which it is reduced. The problem is that the

“syntactic” relationship between an application and its parent is only visible in the

graph when the application is constructed. However, EDT nodes are only built for
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Figure 8.3: Freya’s construction of the EDT during reduction.

applications if and when they are reduced, which may be under a different context.

Consider the application of *. The body of start creates the application, but its

reduction is demanded underneath an application of double. Therefore it is not

clear in the normal graph reduction whether start or double is the parent of *.

Strict languages do not suffer this problem because function applications are always

reduced immediately after they are constructed (creation context and reduction

context are the same).

Freya solves the problem by annotating application nodes with pointers back to

their creation context (an EDT node). These pointers are indicated in Figure 8.3
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by dashed lines. When a reduction takes place three things happen:

1. A new EDT node is allocated, recording the applied function’s name, pointers

to the arguments, and a pointer to the result.

2. The reduced application graph is overwritten by the body of the applied func-

tion in the usual way. Any new application nodes that are created by this

step are annotated with pointers back to the new EDT node. This records

the fact that these new applications are “syntactically” children of the applied

function.

3. The newly created EDT node is made a child of its own parent. The parent

is found by following the application node’s annotation pointer.

Freya builds a big-step EDT, with higher-order values printed in the intensional

style. So function applications determine their parents at the point where they are

fully applied (following the definition of direct evaluation dependency in Figure 3.2).

Thus, as an optimisation, only saturated applications are annotated with pointers

back to their creation context.

The idea of annotating application nodes with pointers inspired the design of

buddha. However, buddha is based on program transformation so we cannot annotate

the application nodes directly. Instead, we add extra arguments to functions, which

serve the same purpose. Also, the idea of annotating graphs is extended in buddha

because we are interested in two possibly different creation contexts, owing to the

fact that we can print higher-order values in two different ways.

To avoid prohibitive memory usage caused by the EDT (and its links to the inter-

mediate values of the program being debugged), Freya employs piecemeal generation,

as discussed in Section 7.4.

From the user perspective, Freya differs from buddha in two main ways:

1. Each CAF produces a separate EDT in Freya resulting in a forest of EDT

nodes which must be traversed independently. Buddha produces a single EDT

rooted at main. Both approaches were compared in Section 5.5.
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2. Freya only supports the intensional style for printing functions.

The two main limitations of Freya are that it is not portable, and that it does

not support full Haskell. At present it only works on the SPARC architecture and it

would be a considerable amount of work to port it to other types of machine. It would

probably be better to make use of existing compiler technology and transfer the ideas

of Freya into a mainstream compiler such as GHC. The necessary modifications to

the STG machine are considered briefly in Nilsson [1999], however it is unclear how

much work this would be in practice.

The main advantage of Freya’s implementation is efficiency: a program com-

piled for debugging only takes between two and three times longer than normal to

execute [Nilsson, 2001], whereas buddha incurs a slowdown of around fifteen times.

However, it must be noted that buddha is built on top of GHC, and GHC is an

optimising compiler whereas Freya is not. To some extent the relative overheads in-

troduced by debugging depend on the underlying compiler implementation. Higher

values are expected for optimising compilers, which suffer relatively larger penalties

by the introduction of debugging instrumentation.

8.3.2 Program transformation

Naish and Barbour [Naish and Barbour, 1996], and Sparud [Sparud, 1999], have

suggested program transformations for declarative debugging. They are fairly simi-

lar, and to simplify this discussion we present a rough sketch that resembles a union

of their ideas. A prototype implementation, and a more detailed discussion can be

found in [Pope, 1998].

The transformation goes as follows. A program, which computes some value

v, is transformed into one that computes a pair (v,e) where e is an EDT which

describes the computation of v. The construction of the EDT is done at the level of

functions, so that each function application produces a sub-tree of the EDT as well

as its usual value. A new top-level function is added to the transformed program

which demands the evaluation of v first and then applies a diagnosis algorithm to e.
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We illustrate the transformation of functions by way of a small example. Below

is an implementation of list reversal using the well known naive reverse algorithm

(it depends on append which is not defined here):

nrev :: [a] -> [a]

nrev zs

= case zs of

[] -> []

(x:xs) -> append (nrev xs) [x]

First, the type signature must change to reflect that all transformed functions

return a pair containing their normal result and an EDT node:

nrev :: [a] -> ([a], EDT)

Second, the body of the function must be transformed to build an EDT node.

The body of nrev is a case expression with two alternatives. In the first alternative

there are no function applications, so there are no nodes to collect. In the second

alternative there are two applications, which will each return a value-EDT pair.

Nested function applications are flattened, and new bindings are introduced to access

the respective values and EDT nodes resulting from them:

let (v, ts)

= case zs of

[] -> ([], [])

(x:xs) -> let (v1, t1) = nrev xs

(v2, t2) = append v1 [x]

in (v2, [t1, t2])

in ...

Note the decomposition of the nested function applications:

before after

append (nrev xs) [x] −→ (v1, t1) = nrev xs

(v2, t2) = append v1 [x]

The variables v1 and v2 are bound to the original value of the intermediate appli-

cations, and t1 and t2 are bound to children nodes. An EDT node is constructed

for the application of nrev as follows:
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nrev zs

= let (v, ts)

= transformed case expression
edt = EDT "nrev" -- name

zs -- arguments
v -- result
ts -- children

in (v, edt)

The result of the transformed function is (v, edt), where v is the value of the

original function and edt is the newly constructed EDT node.

Difficulty arises with higher-order functions. Consider the transformation of map:

map f list

= let (v, ts)

= case list of

[] -> ([], [])

x:xs -> let (v1, t1) = f x

(v2, t2) = map f xs

in (v1:v2, [t1,t2])

edt = ...

in (v,edt)

The transformation of ‘f x’ implies that the argument f is a transformed function

that produces a value and an EDT as its result. The type signature of map might

be changed to reflect this:

map :: (a -> (b, EDT)) -> [a] -> ([b], EDT)

However, this implies that map’s first argument is a function that produces an EDT

after being given just one argument, which is not always true. The problem is that

the transformation only constructs EDT nodes for saturated function applications.

However, it is not known whether ‘f x’ is saturated because, in the definition of

map, the arity of f is not known.

Type-directed program specialisation was briefly considered as a solution to the

problem [Pope and Naish, 2002]. The idea is to analyse the ways in which map is

called with respect to the arity of its first argument and produce specific clones for

each case. Within each clone it is known the ‘f x’ is saturated. Calls to map have

to be redirected to the appropriate clone based on the arity of the first argument.
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This is quite similar to de-functionalisation which translates higher-order programs

into first-order ones by specialisation [Bell et al., 1997]. There are many problems

with this approach:

• It causes code expansion because of function cloning. In pathological cases

this could result in exponential growth of code.

• Type information must be pushed down through the static call graph. This

requires a whole program analysis which goes against bottom-up (separate)

compilation.

• The possibility of polymorphic recursion in Haskell means that there might be

no static limit on the number of clones needed for a given function based on

the arities of its higher-order arguments, such as:

f :: (a -> b) -> c

f g = f (\x -> g)

Each recursive call applies f to a function of arity one more than the previous

call.

A better solution was proposed by Caballero and Rodŕıguez-Artalejo [2002].

Each curried function of arity n is unravelled into n new functions with arities 1 to

n. All of the new functions except the highest arity represent partial applications of

the function and produce “dummy” EDT nodes, which are ignored by the debugger.

For example, suppose the program contains a function called plus for adding two

integers. After transformation the program will contain these two declarations:

plus1 :: Int -> (Int -> (Int, EDT), EDT)

plus1 x = (plus2 x, EmptyEDT)

plus2 :: Int -> Int -> (Int, EDT)

plus2 x y = ... usual transformation ...

Calls to plus with zero arguments are replaced by calls to plus1 throughout the

program. So ‘map plus [1,2,3]’ would be transformed to ‘map plus1 [1,2,3]’.
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When plus1 is applied to an argument in the body of map it will produce a pair

containing a partial application of plus2, and a dummy EDT node. The result of the

call to map will be a list of functions, which after transformation will have the type

‘[Int -> (Int, EDT)]’. If one of those functions in the list is eventually applied to

another argument and then reduced it will produce a pair containing an integer and

a proper EDT node. Therefore the node for plus will be inserted into the EDT in

the context where it is saturated.

We improved upon this scheme by using monadic state transformers to simplify

the plumbing of EDT nodes throughout the bodies of function definitions [Pope and

Naish, 2003a]. The basic idea is that the list of sibling nodes can be treated as

program state, which is threaded through all the function applications in the body

of a function definition. Saturated function applications insert new nodes into the

state, whereas partial applications pass the state along unchanged. This allowed us

to avoid the need to introduce dummy nodes in the EDT.

It is interesting to compare this style of transformation with the one used in

buddha. For the sake the discussion we will call the style discussed above the purely

functional style, since, unlike the transformation of buddha, the EDT is computed

as a result of the program rather than as a side effect.

One of the advantages of the purely functional transformation is that it makes

better use of idiomatic Haskell style — no side-effects. This ought to make it easier to

reason about, and this is probably true for a declarative reading of the transformed

program. However, we found that the purely functional style is more difficult to

reason about operationally, and this kind of reasoning is very important in the con-

struction of debugging tools, especially when we are interested in keeping overheads

down.

For example, consider this function for computing the length of a list:

length [] acc = acc

length (x:xs) acc = length xs (1 + acc)

The function uses an accumulating parameter so that it can be written in the tail
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recursive style, and thus uses constant stack space.6

Let us compare the two styles of transformation on the second equation. First,

in the purely functional style:

length (x:xs) acc

= let (v1, t1) = 1 + acc

(v2, t2) = length xs v1

edt = ...

in (v2, edt)

And second, in the style of buddha:7

length context (x:xs) acc

= call context ... (\i -> length i xs ((+) i 1 acc))

In the purely functional style, information about the EDT travels “upwards” through

the call graph, because each function returns a node as part of its result. Whereas, in

buddha’s transformation, information about the EDT travels “downwards” through

the call graph, because each function receives a pointer to its parent via an argument.

An important consideration is whether the transformation preserves the stack

usage of the original definition. Whilst buddha’s version is no longer tail recursive,

it is clear that its stack usage remains constant. That is because the body of the

original function is wrapped by call, but call only does a small amount of work

to build an EDT node and then returns without evaluating the body of the original

function. When call is finished we are left with ‘length c xs ((+) c 1 acc)’,

where c is a pointer to the node constructed by call. This expression is now a

tail call, so the stack usage remains constant. Analysing the stack usage of the

purely functional version is much more difficult. The construction of the EDT node

is interleaved with the calculation of the normal value of the function. It is rather

difficult to see in what order each part is performed without a careful analysis of

the intricacies of let bindings and lazy pattern matching; so we can be less confident

about additional space usage being kept to a minimum.

6We should also force the accumulator to WHNF in the recursive equation to avoid an O(N)
space leak caused the successive applications of +, but we omit that detail to simplify the discussion.

7We use a simplified version of the transformation, but the essence is the same.
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Another problem with the purely functional version is that EDT nodes are con-

structed (as thunks) regardless of whether their result value is needed by the pro-

gram. For example, consider this piece of code:

f x = length [plus 1 x, plus 2 x]

The values inside the list are not needed so they will not be evaluated under lazy

evaluation. Now consider its transformation in the purely functional style:

f x = let (v1, t1) = plus 1 x

(v2, t2) = plus 2 x

(v3, t3) = length [v1, v2]

edt = ... [t1, t2, t3] ...

in (v3, edt)

The thunks created for the applications of plus cannot be garbage collected because

the EDT for f refers to t1 and t2. These thunks consume heap space unnecessarily,

and the node for f appears to have two more children than it ought to. During

debugging we have to discard EDT nodes whose result is not in WHNF. Now consider

buddha’s transformation:

f context x

= call context ...

(\i -> length i [plus i 1 x, plus i 2 x])

No new references are introduced to the results of function applications that did not

already exist in the original program. So the applications of plus can be garbage

collected as usual. Furthermore, the node for f will have only one child, because

nodes are only created for applications that are actually reduced.

8.4 Hat

Many tracing schemes have been proposed, for example [Watson, 1997, Gibbons and

Wansbrough, 1996, Goldson, 1994] — too many to explain in detail here — but few

have been implemented for nontrivial languages. Probably the lack of large scale

implementations is due to the enormous effort required, combined with limited re-

sources. Most tracing debuggers have halted at the proof-of-concept stage. The rest
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of this section is dedicated to Hat, which unlike other tracers is a mature debugging

tool that supports the full Haskell language (and various popular extensions).

Hat is similar to buddha in several ways. Both tools

• are implemented by program transformation;

• aim to be portable;

• give a high-level view of the program execution;

• require the program to be run to completion before debugging begins.

Where they differ is how and what information is recorded. Hat records a very

detailed account of every value’s reduction history, called a redex trail, whereas

buddha only records an annotated dynamic call graph (EDT). Another difference is

that Hat writes its trace to a file, whereas buddha keeps the EDT in main memory.

Hat’s history goes roughly as follows. Initially, Runciman and Sparud devised

the redex trail and a program transformation to produce it. This work is detailed

in Sparud’s PhD thesis [Sparud, 1999]. The trail was stored in memory, and to save

space they proposed various pruning techniques. Runciman, Wallace and Chitil

continued with this work and developed the first usable incarnation which was tied

to the nhc98 compiler. This differed from the original work in that a complete trace

was recorded and written to file instead of being stored in main memory. Later,

the program transformation part of the debugger was removed from the front end

of nhc98. This allowed a more portable version which works in a similar way to

buddha. The original program is transformed into a self-tracing one which can be

compiled by any full-featured Haskell implementation (at the time of writing Hat

works with nhc98 and GHC).

The most important feature of Hat is that it allows many different views of the

trace history, giving rise to a number of debugging techniques [Brehm, 2001], for

example:

1. hat-trail: backwards traversal through the trace starting at a value that ap-

pears in the program output.
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2. hat-observe: show all the calls to a given function.

3. hat-detect: a declarative debugger.

4. hat-stack: stack tracing for aborted computations, simulating what the stack

might look like under eager evaluation.

We will concentrate on hat-trail because no other Haskell debugger offers an

equivalent facility (compare: hat-observe with Hood, hat-detect with buddha or

Freya, and hat-stack with HsDebug).

Below is a buggy program that is supposed to compute the factorial of 3:8

fac 2 = 3

fac n = n * fac (n - 1)

main = fac 3

Running this program gives the answer 9, which is clearly wrong.

Debugging in hat-trail is a search backwards through the reduction history start-

ing from a wrong output value, aiming to discover where it originally came from.

More realistic programs will have many outputs which must be searched through

to find a suitable starting point. In this case there is only one output value, so the

first step is trivial. Selecting an expression causes hat-trail to show where it came

from. The initial expression is called a child, and the “came from” component is

called the parent of the child. Parents are themselves expressions. Roots are ex-

pressions that have no parents, which correspond to CAFs. The user can decide to

select sub-expressions of the parent or delete the parent and go back to the child.

The interface resembles an upside-down stack which expands one level downwards

each time a new expression is selected, and shrinks one level upwards each time one

is deleted. As it happens, the parent of 9 is ‘3 * 3’, within which three possible

expressions can be selected: the whole application, and either of the 3s.9 Following

the parent of the right 3 will lead to ‘fac 2’ and to the buggy line of code.

8Inspired by a similar example in Brehm [2001]
9Actually there is another sub-expression corresponding to * on its own, though it shares the

same parent as the whole application. The sub-expressions for function names are left out to simplify
the presentation.
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9

3

3

−

21main

*

fac fac

Figure 8.4: Redex trail for the factorial computation.

Figure 8.4 depicts the redex trail for this computation. Solid lines represent

paths from children to parents, and dashed lines represent links to sub-expressions.

In terms of hat-trail’s interface, movement along a solid line corresponds to pushing

a parent expression onto the stack (or popping it off in the opposite direction), whilst

movement along a dashed line corresponds to selection of a sub-expression. There

are ten different paths leading from 9 to main, so there are ten different ways a user

can navigate from leaf to root. Each node in the trail has exactly one parent except

for main, which has no parents because it is a CAF. Nodes in the trail are annotated

with source code locations which are displayed when an expression is highlighted.
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main => 9

fac 3 => 9

3 − 1 => 2 fac 2 => 33 * 3 => 9

Figure 8.5: EDT for the factorial computation.

In terms of usability there are a number of potential problems with the hat-trail

interface:

1. It is easy to get lost in the trail.

2. Exploration starts with program outputs and proceeds backwards. This is

useful when the size of the output is small and character based, but one can

imagine difficulties with other patterns and types of I/O. A related problem is

the situation where the bug symptom is the absence of some kind of output.

It is not clear where to start exploration in that situation.

3. Higher-order programs can give rise to particularly complex traces which can

be hard to understand.

It is unlikely that only one view of the trace will be ideal for all situations, thus it

is a major advantage of Hat that multiple views are available. The ability to move

seamlessly between views in a single debugging session is being investigated by the

developers [Wallace et al., 2001].

An EDT for the factorial computation is given in Figure 8.5 for comparison.

To support declarative debugging on top of the redex trail it is convenient to have

pointers from parents to children, thus mimicking the links between nodes in the

EDT. The current version of Hat employs an Augmented Redex Trail which has

both backward and forward pointers between nodes for this purpose [Wallace et al.,

2001].
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The redex trail is produced by a self-tracing Haskell program, which is generated

by a transformation of the original code. The details of the transformation are

somewhat complicated, but the principle is simple. The trace file contains a sequence

of trace nodes. Each node encodes an application or a constant,10 and is identified

by a reference value which is its position in the file. Trace file references link parents

to their children, and application nodes to their arguments, allowing a sequential

encoding of a graph. Each expression in the transformed program is paired with

its trace file reference. Evaluation of a wrapped expression causes a node to be

written into the trace file at the corresponding reference location. Ordinary function

application is invalidated because the function and arguments are wrapped up, so

special library combinators are introduced to record application nodes and unwrap

the components for evaluation.

Storing the trace structure in a file has two distinct advantages over main mem-

ory:

1. On modern machines the file-system is typically at least an order of magnitude

larger than main memory. This makes it possible to store much larger traces,

and thus debug longer running programs. There is one important caveat: the

trace viewers must be carefully constructed to avoid reading large portions of

the trace at once, lest they re-introduce the need for very large main memories.

2. The trace can be generated once and used many times, amortising the other-

wise high cost of trace generation.

A downside is that writing to the file-system is typically several orders of mag-

nitude slower than writing to main memory. The slowdown introduced by Hat is

reported in one instance to be a factor of 50 [Wallace et al., 2001], and in another

instance between a factor of 70 and 180 [Chitil et al., 2002] (70 when used with

nhc98 and 180 when used with GHC). Though main memories tend to be much

smaller than the file-system it is possible to keep the space requirements down by

10There are other types of nodes, for example to identify applications that were not reduced to
WHNF and so on, but we overlook such details to simplify the description.
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keeping only part of the trace and recomputing the missing pieces on demand. It is

much more difficult to take advantage of re-computation when the trace is kept on

disk.

8.5 Step-based debugging

Generally speaking, step-based debugging tools are a bad match for non-strict lan-

guages because they expose the order in which function calls are made at runtime,

which is generally difficult for the user to understand.

There is one case where this argument has proven to be wrong, or at least

inaccurate. Ennals and Peyton Jones have shown that step-based debugging is

possible in a non-strict language if optimistic evaluation is employed instead of lazy

evaluation [Ennals and Peyton Jones, 2003a]. Their debugger is called HsDebug and

it works just like the kind of debuggers people use in imperative languages: one can

set break points on function calls, and single step through each call as they happen.

Optimistic evaluation causes function applications to be evaluated eagerly, some-

times this is called speculation [Ennals and Peyton Jones, 2003b]. It is important

to emphasise that optimistic evaluation is still non-strict, and on occasion a branch

of execution, such as the body of a let-bound variable, might be suspended if the

runtime decides that it is too costly. The authors call this technique abortion. Also,

suspended computations can be resumed at later times if more of their value is

needed by the program.

The justification for optimistic evaluation is that laziness is rarely ever needed

in practice and most parts of a program can be evaluated eagerly.

Optimistic evaluation provides two main advantages for debugging:

1. The stacking of function calls usually resembles the nesting of applications

in the source code. This makes it easier to see how calls are related to the

program structure.

2. Argument values are (mostly) evaluated before the body of the function is
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entered, making them easier to display and comprehend.

A purely decorative call stack is maintained for tail recursive functions to give

informative stack tracing information, though the stack is pruned (or collapsed) if

it gets too big.

A consequence of optimistic evaluation is that it is possible to debug a program

“as it happens”. A problem with program tracers and declarative debuggers is

that they need to run the whole program first, or at least large parts of it, before

debugging can commence. This makes debugging seem less immediate, but it also

means that the debugger must conservatively record large amounts of information

about program values just in case the user might want to view them later on. A

step based debugger only has to show a snap-shot of the program state at any given

point. Building space efficient step based debuggers is therefore much easier than

for tracers and declarative debuggers.

One concern with this approach is the effect of abortion (and resumption) of

speculative branches. These jumps in control flow are likely to be hard to follow

for the user. However, the authors report that the number of abortions in a typical

program run is relatively small, so the extent of their disruption may only be minor

in practice.

HsDebug is closely tied to an experimental version of GHC that supports op-

timistic evaluation. The intimate relationship between HsDebug and the compiler

and runtime system means that it works with the same language as GHC, including

all its extensions. At the time of writing there is no official release of optimistic

GHC or HsDebug, and development has stalled at the prototype stage.

8.6 Monitoring semantics

Kishon et al. argue that a wide range of debugging tools (or monitors) can be built in

a systematic way by derivation from a formal semantics [Kishon et al., 1991, Kishon

and Hudak, 1995]. Rather than define a single tool, they provide a framework in
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which a variety of tools can be understood and implemented. The benefits are:

• Consistency: it is easy to prove that the monitoring tools do not change the

meaning of the program.

• Modularity: language semantics and monitors are described independently.

This makes it easier to support new languages and new monitors. Program-

mers can also define their own custom monitors.

• Clarity: the authors lament the lack of formality in the design of most debug-

ging tools. In many cases debuggers are too deeply entangled in the underlying

compiler implementation which makes them difficult to understand, maintain

and extend.

• Compositionality: monitors can be composed together to build more complex

programming language environments.

The general idea can be summarised by a simple equation:

monitoring semantics + monitor specification = monitor

A monitoring semantics is a formal semantics in continuation passing style,

parameterised with respect to a monitor state (the information manipulated by a

monitor as evaluation proceeds). In a standard semantics the meaning of a program

is some value α ∈ Ansstd, where Ansstd is a domain of “final values”. In the

monitoring semantics the meaning is a function: f : MS → (Ansstd,MS), where

MS is a monitor state. In more specific terms, f is a function from an initial

monitoring state to a pair containing the normal answer of the program and a final

monitoring state. The continuation style is useful because it exposes a linear order

on program evaluation and monitoring is usually interested in “what happens when”.

Also, many sequential languages can be given a semantics in this style, thus making

the approach quite general.

The underlying language is extended with a finite set of labels, which can an-

notate any expression in the program. The type and purpose of labels is decided
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by the particular monitor. For example, in a profiler, the body of some function g

is wrapped in a ‘Profile’ label, to request that calls to this function be counted

each time the body is evaluated. An annotation function inserts labels into desired

program locations just prior to evaluation.

A monitor specification is a pair of monitor-state-modifying functions, called

pre and post, which are invoked on every labeled expression. An interpreter for the

monitoring semantics threads a monitor state through the evaluation of a program,

which is updated by pre and post whenever a labeled expression is encountered.

Each interpreter will also maintain its own state, such as an identifier environment

and perhaps a heap, which are also passed as arguments to pre and post so that

they can look up the value of variables and so on. As the names suggest, pre is

called just prior to evaluating the labeled expression, and post just after (post is

also given the resulting value of the expression as an argument). Some monitors do

not need both functions, for example a profiler could use either pre or post (but

not both) to count the number of times a labeled function body is evaluated.

A combining function, called &, plays the role of ‘+’ in the above equation.

It takes an interpreter for a monitor specification, and a monitoring semantics as

arguments, and it returns a monitoring interpreter as its result. Essentially & catches

all labeled expressions and inserts calls to pre and post into the normal evaluation

pipeline.

In a lazy interpreter, the pre and post functions can only witness the dynamic

call-graph, which means that it is not possible to construct an EDT based on the

monitoring semantics as it stands. Two possible solutions are:

1. Extend the annotation phase to a full debugging transformation which con-

structs the EDT explicitly (such as the one described in Section 8.3.2).

2. Allow the pre function to dynamically label expressions to simulate the con-

struction of the EDT used in Freya. The idea is to label each saturated function

application with backwards references to its parent redex whenever the body

of a function is expanded.
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The first solution is probably overkill, since it makes the rest of the framework

redundant. The second solution is feasible but it requires a small change in the

definition of the monitor specifications to enable dynamic labeling in addition to

monitor-state modification.

An obvious problem is that building debuggers based on meta-interpretation can

be rather inefficient. The authors refer to Lee [1989], saying that the cost of this

technique can be several orders of magnitude slower than hand-written techniques.

They propose to use partial evaluation as a solution. Partial evaluation is a technique

which specialises a program with respect to part of its input. The result is a less

general, but more efficient instance of the original program. For example, partially

evaluating an interpreter with respect to a program gives a compiled program as

output. There are three levels of partial evaluation available to monitors written in

this way:

1. The monitoring semantics can be specialised with respect to the monitor spec-

ification to produce a monitoring interpreter as output.

2. The monitoring interpreter can be specialised with respect to a particular input

program to produce an instrumented program as output (somewhat akin to

the transformed program produced by Hat, and buddha).

3. The instrumented program can be specialised with respect to a partial input

to produce a more specific version of the program.

For partial evaluation up to the second level, they cite three orders of magnitude im-

provement on some very simple programs. However, these remarkable results should

be tempered with the fact that scaling this technique up to full Haskell appears to

be a difficult engineering problem, and one that has not yet been overcome.

Even if the monitoring semantics does not produce practical full-scale tools it

is nonetheless useful as a test-bed for new debugging ideas. For instance it would

not be too difficult to prototype Hood in this framework. Problems identified and
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solved in this more formal context could inform the implementation of practical

hand-written systems.

8.7 Randomised testing with QuickCheck

Testing is one of those things in life that we all know is important but we hate having

to do. It is dull laborious work, and when weighed against the more enjoyable parts

of program development it can often be neglected. As Larry Wall once said:

Most of you are familiar with the virtues of a programmer. There are

three, of course: laziness, impatience, and hubris.

Of course it is well understood that testing has an important role in quality assur-

ance, and it plays a big part in program debugging [Zeller, 2005, Chapter 3].

Much of the inertia against systematic testing can be attributed to the lack

of support from programming environments, though there is ample opportunity

for automation. This has motivated QuickCheck [Claessen and Hughes, 2000], a

lightweight randomised testing library for Haskell. The idea is to encourage the

programmer to codify formal properties of their functions using Haskell as the spec-

ification language.

For example, here is a property of merge: given two sorted lists it produces a

sorted result:11

property1 xs ys

= sorted xs && sorted ys ==> sorted (merge xs ys)

Below is a buggy version of merge:

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x <= y = y : merge xs (x:ys)

| otherwise = y : merge (x:xs) ys

11This property is not a complete specification for merge. For example, it is easily satisfied by a
function that always returns the empty list. Note also that it assumes a correct definition of the
sorted function.
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which can be tested by QuickCheck with the following command:

◮ quickCheck property1

Falsifiable, after 12 tests:

[-4,-3,-3,6]

[3,4]

The function quickCheck is provided by the library, it takes a property as its ar-

gument and applies it to a large fixed number of randomly generated test cases.

Here it only took 12 tests to come up with a counter-example. The message is that

‘merge [-4,-3,-3,6] [3,4]’ is not a sorted list (and indeed the expression eval-

uates to [3,-4,4,-3,-3,6]). quickCheck is overloaded with respect to the type

of property it can take as an argument, and hence the domain of test data. Type

classes provide the overloading mechanism as usual.

Random generation does not always guarantee a good selection of test cases,

and this raises some doubts about the quality of coverage offered by such a tool.

QuickCheck addresses this problem by allowing the programmer to write their own

data generation methods with carefully skewed distributions. Various monitoring

functions, such as histograms, are provided to show exactly what kind of test cases

are being produced, which can help inform the creation of even better generators.

As with all testing regimes, the lack of counter-examples should not be taken as

proof of their absence — all the more reason to study the distribution of test data

very carefully.

Perhaps the best aspect of QuickCheck is that it encourages the programmer

to think about the formal properties of their functions and codify them in the pro-

gram. This serves as useful documentation with the extra benefit of being testable.

QuickCheck will often reveal problems in the corner cases that might otherwise have

been overlooked.

The simplicity of QuickCheck is evidence of the benefits one gets from purely

functional code. The absence of side effects greatly simplifies the codification of

(partial) formal properties because the correctness of a function’s result only depends

on the values of its arguments. This allows a fine-grained approach to testing, and
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tool type implementation

trace diagnostic primitive/library
Hood diagnostic library
Freya declarative runtime instrumentation
Hat tracer / multi-purpose program transformation
HsDebug step-based runtime instrumentation
Mon. Semantics multi-purpose meta-interpretation
QuickCheck randomised testing library
buddha declarative program transformation

Table 8.1: Classification of Haskell debugging tools.

according to the authors, random testing generally works best on small portions of

code rather than large units.

A helpful tutorial for QuickCheck and Hat is provided by Claessen et al. [2003].

They also highlight how the two tools can be used in tandem as a testing-debugging

package.

8.8 Final remarks

8.8.1 Classification of the different tools

To get an idea of the “big picture” of debugging non-strict functional languages it is

useful to classify each of the existing tools in terms of their type and functionality.

Table 8.1 classifies each tool under these headings:

• type: the style of debugging offered by the tool.

• implementation: how the tool is constructed.
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tool full Haskell public portable mode lazy h/o

trace yes yes no manual no no
Hood yes yes yes manual yes yes
Freya no yes no auto yes yes
Hat yes yes yes auto yes yes
HsDebug yes no no auto n/a yes
Mon. Semantics no no yes auto yes yes
QuickCheck yes yes yes manual n/a yes
buddha yes yes semi auto yes yes

Table 8.2: Features of Haskell debugging tools.

Table 8.2 lists the features of each tool under these headings:

• full Haskell: does the tool support the full Haskell language?

• public: is the tool officially released to the public, and in a usable state (at

the time of writing)?

• portable: is the tool compiler independent?

• mode: does the tool require manual intervention by the user, or is it auto-

mated?

• lazy: does the debugger deal with lazy evaluation?

• higher-order: does the tool deal with higher-order functions adequately?

Entries marked as “n/a” indicate that the heading is not applicable to the particular

debugger. For instance:

• HsDebug supports non-strict evaluation, but not lazy evaluation.

• QuickCheck tests are independent of evaluation strategy.

Buddha is classified as semi-portable because it relies on a handful of compiler-specific

hooks. Currently those hooks are only provided for GHC.

The design space for debugging tools is large, and the existing systems seem to

be fairly diverse in their combination of type, implementation and features. Of all

the tools, Hat and Freya are the most closely related to buddha.
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8.8.2 Usability

In all this talk of implementation details, it is easy to lose sight of the fact that these

tools are intended to be used on real debugging problems. As Richard Stallman once

said:

Research projects with no users tend to improve the state of the art

of writing research projects, rather than the state of the art of writing

usable system tools.

Usability testing is therefore crucial. Chitil et al. [2001] compare Freya, Hat and

Hood on several small-to-medium-sized programs. Their conclusions are that each

system has its strengths and weaknesses, but no particular tool is optimal in all

cases. Also, they generally agree with the advantages and disadvantages of each

system identified in this chapter. Perhaps the main limitation of their test cases

is that none of them extensively use difficult-to-debug higher-order styles, such as

monads and continuation passing style. Since these tests were conducted, Hat has

changed significantly, gaining multiple views and independence from nhc98, and

buddha has become publicly available.
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Chapter 9
Conclusion

It has been just so in all my inventions. The first step is an intuition — and

comes with a burst, then difficulties arise. This thing gives out and then that

— “Bugs” — as such little faults and difficulties are called — show

themselves and months of anxious watching, study and labour are requisite

before commercial success — or failure — is certainly reached.

Thomas Edison

[Josephson, 1959]

This chapter concludes our thesis; it has two sections. The first section reviews

the main arguments and results from the previous chapters, and briefly summarises

the evolution of buddha. The second section explores several avenues for future

research.

9.1 Review

Debugging Haskell is an interesting research topic because, quite frankly, it is hard,

and conventional debugging technologies do not suit it well.

Purely functional languages, along with logic languages, are said to be declara-

tive. The uniting theme of these languages is that they emphasise what a program

computes rather than how it should do it. In other words, declarative programs
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focus on logic rather than evaluation strategy. The declarative style can be adopted

in most languages, however the functional and logic languages tend to encourage a

declarative mode of thinking, and are usually used most productively in that way.

Proponents of declarative programming argue that the style allows programmers to

focus on problem solving, and that the resulting programs are concise, and easier

to reason about than equivalent imperative implementations. The declarative style

allows more freedom in the way that programs are executed because the logic and

evaluation strategy are decoupled. This means that declarative languages can take

advantage of novel execution mechanisms without adding to the complexity of the

source code; lazy evaluation in Haskell and backtracking search in Prolog are prime

examples.

A key aspect of functional languages is that functions are first class values.

Higher-order functions provide new opportunities for abstraction and modularity,

and are fundamental for certain idiomatic programming styles, such as monads.

The problem with lazy evaluation and higher-order functions is that they make

the operational behaviour of programs hard to understand. Lazy evaluation means

that the order in which function calls are made at run time is not easy to relate to

the static dependencies between functions in the source code. Higher-order functions

make holes in the static call graph that are only filled in when the program is

executed.

Debugging tools for Haskell must somehow overcome the problems introduced by

lazy evaluation and higher-order functions. These issues have seen little attention in

the design of debugging systems for mainstream imperative languages because those

languages tend to be strict and first-order.

Declarative debugging is a promising approach because it abstracts away the dif-

ficult issues of evaluation order, and presents the dynamic behaviour of a program in

a fashion which is easily related to the structure of the source code. Also, declarative

debugging offers advantages which go well beyond the capabilities of conventional

debuggers because:
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• The debugger handles the search strategy. Most other debuggers place the

burden of deciding “what to do” and “where to go” on the shoulders of the

user. Declarative debuggers can take advantage of more sophisticated searches

that would not be feasible by hand.

• Declarative debugging is stateless. There is no contextual information to be

carried by the user in between interactions with the debugger. In other words,

the user does not have to remember what happened in previous steps, or

remember the state of any particular value in the program. Each question

posed by the debugger can be answered independently, which makes it easy to

suspend and resume debugging sessions over longer periods of time, and even

swap users.

9.1.1 Chapter summary

In Chapter 1 we introduced the problem of debugging Haskell programs and ad-

vocated declarative debugging as a solution. We argued for the use of program

transformation as a means to enhance the portability of an implementation.

In Chapter 2 we gave an overview of Haskell, focusing on its most interesting

features, including: syntax, pure functions, higher-order functions, types, non-strict

evaluation and monadic I/O.

In Chapter 3 we discussed declarative debugging in detail. We defined the eval-

uation dependence tree (EDT), and the wrong answer diagnosis algorithm. We

demonstrated the application of our debugger (buddha) on a small example pro-

gram. We discussed the intensional and extensional styles of printing higher-order

values, and related them to the structure of the EDT. We considered the potential

for cyclic paths in the EDT due to mutually recursive pattern bindings. We also

briefly discussed improvements to the wrong answer diagnosis algorithm to reduce

the number of nodes it must visit in order to make a diagnosis.

In Chapter 4 we considered the task of judging reductions which contain par-

tially computed values. We showed that thunks which remain at the end of the pro-
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gram execution can be abstracted away to variables which range over closed Haskell

terms. Variables which appear on the left-hand-side of a reduction are universally

quantified, and variables which appear on the right-hand-side of a reduction are

existentially quantified. Inspired by Naish’s three valued debugging scheme [Naish,

2000], we showed that it is convenient to allow the intended meaning of functions to

be only partially defined over their domain, thus motivating the use of inadmissible

judgements. We argued that the extensional style of printing functional values is

analogous to the printing of lazy data structures, allowing the same principles of

quantification to apply.

In Chapter 5 we defined a source-to-source program transformation over the

abstract syntax of “core” Haskell, which extends the behaviour of the original pro-

gram to produce an EDT as well as its normal value. We showed how to preserve

the sharing of pattern bindings, and how the transformation can support the evalu-

ation dependencies needed by both the intensional and extensional styles of printing

functional values. We argued for the correctness of the transformation, and mea-

sured the runtime performance of transformed programs (without building an actual

EDT) on a sample of five non-trivial programs.

In Chapter 6 we considered the problem of implementing a universal facility for

printing values. We showed that an implementation in pure Haskell is not feasible,

and instead opted for a pragmatic solution based on a foreign function interface to

the runtime system of GHC. We showed that a function can be made printable by

wrapping it in a data structure which encapsulates both the function and its print-

able representation. We showed that the program transformation from Chapter 5

can be optimised for the common case of statically saturated function applications,

which reduces the overheads of wrapping up functional values for printing.

In Chapter 7 we considered the practical problems of debugging I/O functions

and the space usage of the EDT. We showed that the extensional style of printing

functions provides a convenient way to display I/O values, which in-turn makes

I/O functions amenable to declarative debugging. We showed that we can easily
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avoid the construction of nodes for trusted functions, which are quite common in

practice. We illustrated a prototype implementation of piecemeal EDT construction,

inspired by related schemes in Freya [Nilsson, 1998] and the declarative debugger

of Mercury [MacLarty and Somogyi, 2006], and we discussed various ways in which

it can be improved. We also measured the runtime and space performance of the

prototype on the same five example programs first introduced in Chapter 5.

In Chapter 8 we discussed related work, focusing on the tools built for Haskell,

namely: trace, Hood, Freya, Hat, HsDebug, Monitoring Semantics and QuickCheck.

9.1.2 The evolution of buddha

Buddha began life as an honours project to implement the debugging scheme de-

scribed in Towards a portable lazy functional declarative debugger by Naish and

Barbour [1996]. The first prototype emerged in 1998 [Pope, 1998], but it had a

few shortcomings. First, it only worked with Hugs. Second, it did not provide full

support for higher-order functions, because functional values could not always be

printed, and the transformation would sometimes produce incorrect output when

applied to higher-order code (see Section 8.3.2). Third, it only supported a small

subset of Haskell.

At about the same time, Sparud and Nilsson were also working on their own

declarative debuggers for Haskell. One of their early contributions was a detailed

definition of the (big step) EDT [Nilsson and Sparud, 1997]. Later Nilsson would

produce Freya [Nilsson, 1998], and Sparud would produce a debugger based on

Redex Trails [Sparud, 1999], which would later form the basis of Hat. Sparud also

worked on a declarative debugger based on program transformation, but a usable

implementation did not emerge, and it appeared that his approach suffered similar

problems with higher-order functions to that of Naish and Barbour [1996].

For some time, Freya was the most complete debugging system available for a

lazy functional language, but it did not support full Haskell, and only worked on

one kind of system architecture. We believed that program transformation was a
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reasonable way to overcome these limitations.

In 2000 buddha entered its second phase, as a PhD project. We wanted to port

the earlier prototype from Hugs to the more substantial GHC. However, the problem

of transforming higher-order functions correctly and efficiently remained unsolved,

and printing values seemed even harder in GHC than it was in Hugs (mainly because

GHC is a compiler and it does not maintain the same amount of meta-information

about heap objects as does Hugs).

A debugger must be able to print all the values which arise in the execution of a

program. In Haskell this means we must be able to print data values and functions.

To print a function we must sometimes print data values, such as the arguments

to a partial application. Therefore, we decided to solve the problem of printing

data values first. Initially we experimented with an overloaded printing function

based on type classes (similar to what was suggested in [Sparud, 1999]), but this

failed because it cannot support polymorphic values (see Section 6.3). Instead we

opted for a more pragmatic solution, based on an interface to the runtime system

of GHC by way of the FFI. Whilst this reduced the portability of the debugger, it

was simple to implement, and it worked well in practice. Unfortunately the same

technique cannot be used to print functions because GHC’s heap representation

does not carry enough source-level information. So we had to look for some way to

encode the necessary information into the program. Curiously, HOOD was released

in 2000, and it supported the printing of functions using an extensional style. We

briefly considered adapting this approach for our purposes, but it seemed that the

declarative debugging technique needed functions to be printed in the intensional

style — at least that was the silent assumption in the literature up to that point.

It was not until much later that we discovered how to re-structure the EDT to

accommodate the extensional style. We eventually opted to wrap up functions inside

a data structure which contained both the actual function and an encoding of its

term representation (which we elaborated in [Pope and Naish, 2003b]); an idea that

we had previously considered [Pope, 1998], and which was also suggested in [Sparud,
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1999].

Once we had a working printer, we had to solve the problem of transforming

higher-order functions to produce a correct EDT.

Our first approach was to specialise the program with respect to the arities

of higher-order functions [Pope and Naish, 2002]. But this idea had a number of

problems. It required a whole program analysis, which does not work well with

separate compilation, and it did not support certain kinds of polymorphic recursion,

as discussed in Section 8.3.2. It was also difficult from an implementation perspective

because it required type information, and that meant we had to write a type checker

for Haskell, which was an arduous task in itself.

Fortunately, a simple solution came from Caballero and Rodŕıguez-Artalejo

[2002]. We took this idea and modified it to use a monadic style [Pope and Naish,

2003a]. We combined this with our earlier work on printing to produce the first

proper release of buddha (version 0.1) in November 2002. This version supported

most of the syntax of Haskell 98 as well as a large part of the standard libraries.

Having built a debugger we decided to test it on various example programs. Two

things became immediately obvious: the space usage of the EDT would be a limiting

factor for debugging real programs, and debugging certain kinds of higher-order

code was nigh impossible. The space issue was already well known, but the second

problem came as something of a surprise. The difficulty of debugging higher-order

functions was quite apparent when we tried to debug a program which used parser

combinators in the style of Hutton and Meijer [1998]. The intermediate parser values

constructed by the program were large compositions of functions, including many

lambda abstractions, and their term representations, as printed by the debugger,

were extremely difficult to comprehend. Turning to the literature, we found that

the issue of debugging this kind of code had not received much attention. We

decided to postpone the problem of debugging higher-order code and work on the

space problem, since this issue was better understood, and various solutions had

already been proposed in the literature. Again we found that we could make some
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traction by interfacing with GHC’s runtime environment, which lead to our first

prototype implementation of piecemeal EDT construction [Pope and Naish, 2003b],

based on the method suggested by Naish and Barbour [1996].

We returned to the issue of debugging higher-order code after making the impor-

tant realisation that the extensional style of printing could be used in a declarative

debugger if we employed a slightly different notion of evaluation dependency (see

Section 3.5). Unfortunately adapting our existing transformation scheme to support

this new notion of evaluation dependency proved difficult. The main problem was

that our existing scheme related only saturated function applications, but the ex-

tensional style required a relationship between (possibly) partial applications. By

building the EDT in a “bottom up” fashion, it was difficult to insert nodes for par-

tial applications under their correct parent. We solved this problem by adopting a

“top down” approach to building the EDT, such that function applications receive

pointers to their parent nodes by way of an additional argument, called a context.

Functions printed in the extensional style take their parent context at the point

where they are first applied, and functions printed in the intensional style take their

parent context at the point where they are saturated. However, to allow nodes to

be inserted into the correct location we needed to represent parent contexts by mu-

table references. Thus we had to abandon the idea of building the EDT in a purely

functional way. The first version of buddha to incorporate this scheme was version

1.2, released May 2004 [Pope, 2005].

The extensional style of printing functions dramatically improved the compre-

hensibility of questions posed by the debugger on the parser combinator example

mentioned earlier. Encouraged by this result we began looking for other difficult

higher-order examples. We considered other kinds of monads, and quickly our at-

tention turned to the I/O monad. The I/O type is commonly implemented as a state

threading function, where the state is simply a token that stands for the world. In

previous work we had tried to print I/O values in the intensional style [Pope and

Naish, 2003b]. But this often resulted in an unwieldy printout, and the resulting
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structure of the EDT was difficult to relate to the source code. In particular, users

tend to use the do-notation for I/O, but underneath that syntax is a complicated

chain of higher-order functions. The intensional style places nodes for those func-

tions in the context where they are saturated, but that is far removed from the place

where the functions are first mentioned. It occurred to us that we could represent

the world as a counter, where each increment of the counter corresponds to the ex-

ecution of a primitive action. To make the primitive actions printable it was simply

a matter of storing them in a table, indexed by the world counter. By printing

the I/O type in the extensional style we found a simple way to relate the value of

an I/O function with the primitive actions that it produced. We also discovered a

secondary benefit of this approach, namely that the dependencies between nodes in

the EDT closely resembled the dependencies suggested by the use of do notation

(see Section 7.2.2).

The change in program transformation style also had a positive affect on piece-

meal EDT construction. We found that the context arguments, which are used to

link children nodes to their parents, also provide a useful way of controlling how deep

to build a sub-tree (see Section 7.4.3). Based on this idea, we were able to build a

prototype re-evaluation scheme, which works in a similar fashion to the scheme in

Freya. We were also able to make I/O actions idempotent by retrieving the values

of previous executions from the I/O table. The main limitation of our prototype is

that the depth bound is a fixed value, however the branching factor can vary widely

within the sub-trees of an EDT. In Section 7.4.5 we proposed an adaptive method,

which is based on the algorithm used in the Mercury declarative debugger, but mod-

ified for a lazy language. We plan to incorporate this improved scheme into the next

version of buddha, which will allow users to debug more substantial program runs.
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type Root = Maybe (Double, Double)

quadRoot :: Double -> Double -> Double -> Root

quadRoot a b c

| discrim < 0 = Nothing

| otherwise = Just (x1, x2)

where

discrim = b * b - 4 * a * c

rootDiscrim = sqrt discrim

denominator = 2 * a

x1 = ((-b) + rootDiscrim) / denominator

x2 = ((-b) - rootDiscrim) / denominator

intersect :: Root

intersect = quadRoot 1 0 (-16)

Figure 9.1: Computing the roots of a quadratic equation in Haskell.

9.2 Future work

Now that we have a working debugger it is possible to consider how it can be

improved. This section briefly discusses the main problems that we would like to

tackle in the immediate future.

9.2.1 Printing free lambda-bound variables

Figure 9.1 contains Haskell code for computing the real roots of a quadratic equation

f(x) = ax2 + bx + c, using the well known formula:

−b ±
√

b2 − 4ac

2a

Local definitions introduce nested scopes in the program. The where-clause

in quadRoot illustrates the idea. Variables bound in outer scopes are also visible

in the local definitions, including those variables that are bound in outer lambda-

bindings. For example, a, b and c are in scope in the bodies of the functions

defined in the where-clause in quadRoot, which means that occurrences of those
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a = 1, b = 0, c = −16
discrim => 64.0 x1 => 4.0

a = 1, b = 0, c = −16

x2 => −4.0

a = 1, b = 0, c = −16

intersect => Just (4.0, −4.0)

denominator => 2.0rootDiscrim => 8.0

a = 1, b = 0, c = −16 a = 1

quadRoot 1 0 −16 => Just (4.0, −4.0)

Figure 9.2: An EDT for the program in Figure 9.1.

variables are free in those definitions. Thus discrim is a function of a, b and c,

even though those variables are not bound in its head. To determine the correctness

of a reduction involving discrim the user must know the values of a, b and c —

without this information it is impossible to say what the value of discrim should be.

Therefore, reductions involving locally defined functions must indicate the values of

those variables in the EDT. Dependence on a free lambda-bound variable can be

indirect, for example rootDiscrim depends on a, b and c because discrim appears

in its body. Not all local definitions depend on all the lambda-bound variables

that are bound in outer scopes, for example denominator only depends on a. To

minimize the amount of information contained in an EDT node, it is an advantage to

show the values of only those free variables which are actually needed for any given

reduction. Thus a dependency analysis is needed to determine which free variables

are transitively depended upon by which local definitions.

Figure 9.2 illustrates the EDT for the example program. Nodes for nested bind-

ings show the values of free lambda-bound variables above the reductions that de-

pend on them.

Buddha does not yet support the printing of free let-bound variables, however it is
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a relatively simple feature to add. We propose that the free variable information be

added to the representation of identifiers, by extending the definition from Figure 3.3

like so:

type Identifier = (IdentSrc, FreeVars)

type IdentSrc = (FileName, IdentStr, Line, Column)

type FreeVars = [(IdentSrc, Value)]

Local functions can be partially applied and passed as higher-order arguments to

other functions, just like top-level functions. When the partial application of a local

function is printed in the intensional style we should also print the values of its free

variables. This will be possible if we adopt the new representation of identifiers

above, because we also use Identifier in the meta representation of Haskell terms

(see Section 6.4), which forms the basis of the intensional representation.

9.2.2 Support for language extensions

At present buddha only supports Haskell 98, however many useful extensions to the

language have been added to compilers (especially GHC). The most prominent of

these are:

• Multi-parameter type classes [Peyton Jones et al., 1997]

• Concurrency [Peyton Jones et al., 1996]

• Imprecise exceptions [Peyton Jones et al., 1999]

The Haskell community is currently in the process of creating a new standard for the

language, which is likely to include these extensions. Obviously it is a high priority

for buddha to support the new standard when it is finalised.

It is expected that multi-parameter type classes will not pose any significant

problems for the transformation. Concurrency and imprecise exceptions are more

difficult, and will require some changes to be made to buddha. These are discussed

briefly in the remainder of this sub-section.
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There are three issues which need to be addressed for concurrency. The first

issue is EDT construction. Children nodes are inserted into their list of siblings by

destructive update (using IORefs). In a concurrent setting, there is a possibility of a

race condition occurring such that the reads and writes to an IORef are interspersed

between two different threads of execution. Therefore modifications to mutable sib-

ling lists must be made atomic. The second issue is I/O event tabling. All primitive

I/O events are logged in a table, which is indexed by a world counter. This assumes

that there is a total order over all such events. In a concurrent setting, I/O events

are only ordered with respect to a particular thread. The ordering between threads

is non-deterministic, and two runs of the same program may produce different or-

derings. Therefore each thread will need its own unique counter. The third issue

is re-execution for piecemeal EDT construction. Nodes in the EDT are uniquely

numbered (as discussed in Section 7.4) using a global variable. When the program

is re-executed it is essential that all nodes get the same number. The danger is

that when the program is re-executed its threads will be scheduled in a different

order than in a previous run. If this happens, the numbering of nodes will not be

preserved. It is an open question whether we can ensure that threads are scheduled

in the same order for each execution of the program, but it is likely to be difficult

in a system like GHC where scheduling is influenced by memory allocation.

In Haskell 98 exceptions can only be raised by I/O primitives, which means that

it is relatively simple for buddha to discover them (as discussed in Section 7.2.3).

The main challenge with imprecise exceptions is that they can be raised in any type

context, not just I/O. In GHC, imprecise exceptions are implemented in a very low-

level way. catch calls a primitive function which places a special exception-handler

frame on the call-stack. If an exception is raised, the runtime system collapses the

call-stack until the topmost handler is reached (if one exists). All this machinery is

invisible to buddha which makes it more difficult to implement a version of catch

which works with buddha’s own I/O type.
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9.2.3 Integration with an interpreter-style interface

A useful aspect of Haskell is that programs can be easily composed from smaller

parts. Interactive development environments like Hugs and GHCi capitalise on this

property. Programmers can build small pieces of a program at a time and then test

them in isolation before moving on to other parts of the system. This is good for

debugging too, because testing can be done when the code is fresh in the program-

mer’s mind, and the units of code involved in the test can be kept small. When the

user discovers a bug, they normally want to start debugging immediately, without

having to write scaffolding code or step out of their development environment. One

of the biggest usability problems with buddha is that it only works with complete

programs, and debugging always starts at main.

In future versions of buddha we will address this usability problem by imitating

the interface of an interactive interpreter. We will offer the user a command prompt,

at which they can type any valid Haskell expression, and have it evaluated immedi-

ately — just like Hugs or GHCi. This can be achieved (in a fairly standard way) by

“faking” an interpreter with a compiler. When the user types an expression the inter-

preter writes out a new Haskell module to disk. The module contains the expression

wrapped in sufficient code to make it a full program (in essence by demanding the

expression to be printed). The module is compiled and dynamically loaded into the

interpreter, then executed with its result printed at the prompt. We will modify this

basic system by allowing the user to prefix an expression with a “debug” command.

In this case the interpreter will follow a similar path as before, except this time the

expression will first undergo the debugging transformation. The transformed code

will be compiled and executed, and the result will be printed. However, instead of

returning to the interpreter prompt, control will be given to a built-in declarative

debugger, which will explore the EDT. Quitting the debugger will take the user back

to the interpreter prompt. In many cases this kind of interface offers a performance

advantage for debugging as well. The user can be more selective about which part

of a program to debug, which is likely to produce an EDT which is much smaller
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than the one for the whole program.

9.2.4 Customisation

Rather than write a new language from scratch — including all the infrastructure

that goes with it — it is often easier to embed the new language in an existing

host [Hudak, 1996]. Higher-order functions, a powerful type system with overload-

ing, flexible syntax, and lazy evaluation all combine to make Haskell ideal for im-

plementing domain specific languages (DSLs). Lava is one such example, which is

used for describing digital circuits [Claessen, 2001], and there are many more.

Whilst embedding the DSL in a host language has many advantages, there are

problems when it comes to debugging, as noted in [Czarnecki et al., 2003]:

Trying to use the debugger for the existing language is not always useful,

as it often exposes the details of the runtime system for the host language

which are of no interest to the DSL user.

We observe similar problems when it comes to debugging mini-DSLs, like monads

(and no doubt arrows [Hughes, 2000]), as mentioned in Section 7.2.2.

Rather than write a new debugger for the DSL, it would be preferable to cus-

tomise an existing debugger, so that it shows a view of the program which better

reflects the new programming domain. We already do this in an ad hoc way in

buddha for I/O. Values of the I/O type are shown in an abstract way, using the ex-

tensional notation, because the user is not interested in, or knowledgeable about, its

concrete representation. Similarly we avoid showing reductions for >>= and return,

by trusting them, since they are really part of the “host” language. An interesting

direction for future research is to extend the concept of customisation, so that the

debugger can be specialised for arbitrary DSLs. In the very least this will require

specialised printing routines for data values (especially abstract data types), and a

mechanism for taking views of the EDT, so that host language facilities are hidden

from the user.
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9.2 Future work

9.2.5 Improved EDT traversal

The current top-down left-to-right wrong answer diagnosis algorithm of Figure 3.4

is simple to implement, but it results in long debugging sessions when buggy nodes

are found deep in the EDT. More efficient algorithms can be found in the literature,

such as those discussed in Section 3.7. We will consider whether such algorithms

can be adapted for buddha.

We will also look at improving the capabilities of the oracle. At present the

oracle simply remembers previous judgements made by the user, but there are a

whole host of improvements that could be added to make it more powerful. One

interesting example is the use of QuickCheck properties (see Section 8.7), for partial

definitions of the intended interpretation of the program. A node is erroneous if

it falsifies any properties which are relevant to the function being defined. For

this to work, a couple of problems have to be overcome. First, the debugger will

somehow have to execute the properties over a reduction. This will require some

kind of dynamic code execution (perhaps interpretation). Second, some reductions

will contain non-Haskell values, such as question marks (for thunks), and extensional

representations of functions. QuickCheck properties are only defined over normal

Haskell values, so they will have to be “lifted” somehow to cope with the unusual

parts of reductions.

9.2.6 A more flexible EDT

In the traditional view of declarative debugging, reductions in the EDT reflect a big

step semantics (as discussed in Section 3.3). That is, argument and result values are

shown in their most evaluated form. This view is based on an underlying heuristic

that big step reductions are easier to understand than those which are in some kind

of intermediate state.

In the process of developing buddha we began to question this heuristic. We

discovered that debugging some instances of higher-order code can be quite diffi-

cult when higher-order values are printed using their term representation (see Sec-
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tion 3.5). Sometimes reductions are easier to understand if the higher-order values

contained in them are printed in an extensional way. Incorporating the extensional

style of printing into buddha forced us to reconsider the structure of the EDT.

We realised that the concept of evaluation dependency can be made more flex-

ible. For a given program execution there are many possible EDTs that can be

superimposed over the underlying sequence of reductions. Any one of those trees

can be used as the basis of a wrong answer diagnosis.

One problem with the big step EDT is that we must wait until the program

has terminated before debugging can begin — so that all values are in their final

state. This introduces problems with space consumption, as discussed in Section 7.4.

Whilst piecemeal EDT construction provides a partial solution to that problem,

there are numerous complexities in its implementation. Another problem with the

big step EDT is that the final state of a value is not always the easiest to understand,

especially if the final state is a very large object.

Some of the problems with the big step EDT can possibly be avoided by allowing

for a more flexible definition of evaluation dependency — one that allows different

reduction step sizes in reductions. For example, in Section 7.4.5 we suggested an

incremental approach which allows debugging to be interspersed with program eval-

uation, in the hope that memory resources can be more effectively recycled.

In future work we will investigate a more general notion of evaluation depen-

dency which allows variable reduction step sizes in reductions. Hopefully this will

illuminate new possibilities in debugger design, and provide a basis for their imple-

mentation.
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Appendix A
An example transformed

program

In this appendix we show the output of buddha-trans for the example program in

Figure 3.5.

module Main_B where

import Prelude_B (fromInteger, fromRational)

import qualified Buddha as B

import Prelude_B

smain

= B.con Main_B.v5

(\ v6 ->

((#>>) v6 (sputStrLn v6 "Enter a number")

((#>>=) v6 (sgetLine v6)

(B.fe1

(\ snum v7 ->

(#>>) v6 (sputStrLn v6 "Enter base")

((#>>=) v6 (sgetLine v6)

(B.fe1

(\ sbase v8 ->

sputStrLn v6 (sconvert v6 (sread v6 sbase)

(sread v6 snum))))))))))

pconvert :: B.D (B.F Int (B.F Int [Char]))

sconvert :: B.D (Int -> Int -> [Char])

pconvert v20 = B.fe2 (\ v22 _ v23 v21 -> sconvert v20 v22 v23)

sconvert v24 sbase snumber

= B.call Main_B.v19 [B.V sbase, B.V snumber] v24

(\ v25 ->

smymap v25 (ptoDigit v25)

(sreverse v25

(slastDigits v25 sbase (sprefixes v25 sbase snumber))))

265



ptoDigit :: B.D (B.F Int Char)

stoDigit :: B.D (Int -> Char)

ptoDigit v27 = B.fe1 (\ v29 v28 -> stoDigit v27 v29)

stoDigit v30 si

= B.call Main_B.v26 [B.V si] v30

(\ v31 ->

(#!!) v31

((#++) v31 (Prelude_B.senumFromTo v31 ’0’ ’9’)

(Prelude_B.senumFromTo v31 ’a’ ’z’)) si)

pprefixes :: B.D (B.F Int (B.F Int [Int]))

sprefixes :: B.D (Int -> Int -> [Int])

pprefixes v33 = B.fe2 (\ v35 _ v36 v34 -> sprefixes v33 v35 v36)

sprefixes v37 sbase sn

= B.call Main_B.v32 [B.V sbase, B.V sn] v37

(\ v38 ->

case (#<=) v38 sn 0 of

True -> []

False -> case sotherwise v38 of

True -> (:) sn (sprefixes v38 sbase (sdiv v38 sn sbase)))

plastDigits :: B.D (B.F Int (B.F [Int] [Int]))

slastDigits :: B.D (Int -> [Int] -> [Int])

plastDigits v40

= B.fe2 (\ v42 _ v43 v41 -> slastDigits v40 v42 v43)

slastDigits v44 sbase sxs

= B.call Main_B.v39 [B.V sbase, B.V sxs] v44

(\ v45 -> smymap v45 (B.fe1 (\ sx v46 -> smod v45 sbase sx)) sxs)

pmymap :: B.D (B.F (B.F a b) (B.F [a] [b]))

smymap :: B.D (B.F a b -> [a] -> [b])

pmymap v49 = B.fe2 (\ v51 _ v52 v50 -> smymap v49 v51 v52)

smymap v53 v3 v4

= B.call Main_B.v48 [B.V v3, B.V v4] v53

(\ v54 ->

case (v3, v4) of

(sf, []) -> []

(sf, (sx : sxs)) -> (:) (B.ap sf sx v54) (smymap v54 sf sxs))

v0 = "Main.hs"

v48 = B.identFun "mymap" 28 1 Main_B.v0

v39 = B.identFun "lastDigits" 25 1 Main_B.v0

v32 = B.identFun "prefixes" 20 1 Main_B.v0

v26 = B.identFun "toDigit" 17 1 Main_B.v0

v19 = B.identFun "convert" 10 1 Main_B.v0

v5 = B.identFun "main" 3 1 Main_B.v0
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Appendix B
Higher-order functions in the

intensional style

In this appendix we show an alternative debugging session for the example from

Section 3.4. In this version we transform the program to use the intensional style of

printing higher-order values, whereas in the previous version we used the extensional

style.

There are two main differences between the debugging sessions:

1. The shape of the EDT.

2. The way the arguments of mymap are printed.

Nonetheless, buddha returns the same buggy node in its diagnosis (in general there

could be multiple buggy nodes in the EDT and it is possible that we will find different

ones depending on which style of printing higher-order values is used).

To begin with we transform the program, but this time we use the ‘-t intens’

command line switch:
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⊲ buddha-trans -t intens Main.hs

buddha-trans 1.2.1: initialising

buddha-trans 1.2.1: transforming: Main.hs

buddha-trans 1.2.1: compiling

Chasing modules from: Main.hs

Compiling Main_B ( ./Main_B.hs, ./Main_B.o )

Compiling Main ( Main.hs, Main.o )

Linking ...

buddha-trans 1.2.1: done

Then we run the debuggee:

�




�

	

⊲ ./Buddha/debug

Enter a number

1976

Enter base

10

0aaa

After the execution of the debuggee is complete we start debugging:

�




�

	

Welcome to buddha, version 1.2.1

A declarative debugger for Haskell

Copyright (C) 2004 - 2006 Bernie Pope

http://www.cs.mu.oz.au/~bjpop/buddha

Type h for help, q to quit

[0] <Main.hs:3:1> main

result = { 0 -> (8,Right ()) }

First, we decide to draw the EDT:

�

�

�

�
buddha: draw edt

Figure B.1 contains the output from the draw command, as displayed by dotty.

Compare this to Figure 3.6. Note that the nodes are numbered in the same way

in each EDT. This is to be expected because nodes are numbered according to the

order in which reductions take place, and the style of transformation does not alter
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Higher-order functions in the intensional style

[0] main

[1] convert

[2] mymap [3] lastDigits [5] prefixes

[14] toDigit [15] mymap

[16] toDigit [17] mymap

[18] toDigit [19] mymap

[20] toDigit [21] mymap

[4] mymap

[6] mymap

[8] mymap

[10] mymap

[12] mymap

[7] prefixes

[9] prefixes

[11] prefixes

[13] prefixes

Figure B.1: An example EDT diagram produced by the ‘draw edt’ command.

the evaluation order of the program. Also note the position of the nodes for toDigit

in each tree. In Figure 3.6, nodes for toDigit appear as children of the node for

convert because higher-order instances of toDigit are printed in the extensional

style. That means toDigit determines its parent at the point where it is mentioned

by name, which is in the body of convert. In Figure B.1, nodes for toDigit appear

as children of the left-branch of nodes for mymap because higher-order instances of

toDigit are printed in the intensional style. That means toDigit determines its

parent at the point where it is saturated, which is inside the body of mymap.

We decide to look ahead in the EDT by listing the children of the node for main:
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buddha: kids

Children of node 0:

[1] <Main.hs:10:1> convert

arg 1 = 10

arg 2 = 1976

result = [’0’,’a’,’a’,’a’]

We decide to jump to the node for convert:

�

�

�

�
buddha: jump 1

We judge that derivation to be erroneous:

�

�

�

�
buddha: erroneous

Buddha automatically navigates to the first child of convert, which is an appli-

cation of mymap:

�

�

�

�

[2] <Main.hs:28:1> mymap

arg 1 = toDigit

arg 2 = [0,10,10,10]

result = [’0’,’a’,’a’,’a’]

Note that the argument of mymap is now printed in the intensional style. We

judge this derivation to be correct:

�

�

�

�
buddha: correct

Buddha then moves to the next child of convert, which is an application of

lastDigits:

�

�

�

�

[3] <Main.hs:25:1> lastDigits

arg 1 = 10

arg 2 = [1976,197,19,1]

result = [10,10,10,0]

This is erroneous:
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�

�

�

�
buddha: erroneous

Buddha automatically moves to the first (and only) child of lastDigits which

is another application of mymap:

�

�

�

�

[4] <Main.hs:28:1> mymap

arg 1 = (<Main.hs:25:30> lambda)

arg 2 = [1976,197,19,1]

result = [10,10,10,0]

Note that the first argument to map is a lambda function, which buddha prints

using its source code coordinates. We look it up in the program and find that it is

‘\x -> mod base x’. After some careful consideration we decide that this is correct:

�

�

�

�
buddha: correct

We have found a buggy node, so buddha makes a diagnosis:

�

�

�

�

Found a bug:

[3] <Main.hs:25:1> lastDigits

arg 1 = 10

arg 2 = [1976,197,19,1]

result = [10,10,10,0]
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