Haskell for Miranda Programmers

Kevin Glynn
Bernard Pope
({keving,bjpop } @Qcs.mu.oz.au)

Technical Report TR1999/14

Department of Computer Science
and Software Engineering,
The University of Melbourne,
Parkville, Vic. 3052, Australia

June 22, 1999

1 Introduction

This document is designed to help programmers with a knowledge of Miranda! move to Haskell as quickly
and as painlessly as possible. It aims for conciseness over completeness. Pointers to further information
about Haskell can be found in section 11. In particular, you are encouraged to read A Gentle Introduction
to Haskell, which covers the complete language and includes many examples.

According to the Haskell Language Report, the Haskell project started in 1987, at a meeting held
at FPCA 87. It was believed that the advancement of functional programming was being stifled by the
wide variety of languages available. There were more than a dozen lazy, purely functional languages and
none had widespread support (except maybe Miranda, which was already old, a commercial product and
therefore considered unsuitable for the purposes of research and teaching).

A committee was formed to design the language. The name Haskell was chosen in honour of the
mathematician Haskell Curry, whose research forms part of the theoretical basis upon which functional
languages are implemented. Haskell is a modern, consistent language with few rough edges. It is widely
used and widely implemented within the functional programming community. It has largely superseded
Miranda for teaching in universities, not least due to the robust, freely available implementations.

Haskell has provoked much research and discussion into the desirable properties of a modern functional
language and it has undergone a number of revisions. This document describes version 1.4 of the language.

Version 1.4 has recently undergone some minor revisions aimed at making it more suitable for teaching.
The resulting language is known as Haskell 98 and the first conformant implementations are now available.
All major implementations of Haskell have committed to supporting Haskell 98 for the forseeable future,
therefore it can be taught with confidence and it is hoped that this will encourage more teaching materials
and text books to be developed.

The rest of this document describes differences, enhancements and omissions of Haskell 1.4 when
compared with Miranda.

Appendix A gives the Haskell equivalent operators and functions for the functions in the standard
Miranda environment.

2 All You Need to Know

In this section we aim to give a tutorial introduction to all the information Miranda programmers should
need to get started programming in Haskell. Later sections cover important Haskell extensions in more
detail.

Just like Miranda, Haskell is a lazy, functional language with polymorphic higher-order functions,
algebraic data types and list comprehensions. Also like Miranda, it is layout-sensitive: it uses the so-
called off-side rule to delimit definitions. There is a widely used, high quality interpreter available on
many platforms (Hugs) and many compilers.

Unlike Miranda, Haskell supports overloading of function names (ad-hoc polymorphism via type
classes) and has an extensive module system. Haskell is pure, even for 10. Haskell comes with a large
number of modules including support for arrays, complex numbers, infinite precision integers, operating
system interaction and concurrency. In addition, the syntax of Haskell offers a number of conveniences not
found in Miranda (such as anonymous functions, let expressions, if-then-else expressions, case expressions,
as patterns, user-defined operators, ‘wild-card’ parameters, etc.)

Haskell’s standard prelude (equivalent to Miranda’s standard environment) defines a large number of
functions, types and operators. These are automatically available to Haskell programmers.

We now compare and contrast the two languages by first introducing a number of examples written
in both languages.

L«Miranda” is a trademark of Research Software, Ltd.

Firstly tree insert in Miranda:

<1>
<2>
<3>
<4>
<b6>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>

tree_type * ::= Null |
Tree (tree_type *) * (tree_type *)

|| bst_insert new bstree

|| To insert a new item into its correct position in a BST.
|| If the new item duplicates an existing item in the tree,
I insert into left subtree.

bst_insert :: * -> tree_type * -> tree_type *
bst_insert new Null = Tree Null new Null || tree is empty so create singleton tree
bst_insert new (Tree ltree val rtree)

= Tree (bst_insert new ltree) val rtree, if new <= val

= Tree ltree val (bst_insert new rtree), otherwise

and now in Haskell:

<31> data TreeType a = Null |

<32> Tree (TreeType a) a (TreeType a)

<33> deriving (Eq, Ord, Read, Show)

<34>

<35> {- bst_insert new bstree

<36> To insert a new item into its correct position in a BST.

<37> If the new item duplicates an existing item in the tree,

<38> insert into left subtree.

<39> -}

<40> bst_insert :: Ord a => a -> TreeType a -> TreeType a

<41> bst_insert new Null = Tree Null new Null -- tree is empty so create singleton tree

<42> bst_insert new (Tree ltree val rtree)

<43> | new <= val = Tree (bst_insert new ltree) val rtree

<44> | otherwise = Tree ltree val (bst_insert new rtree)
Comments

Haskell has two comment styles: block comments and line comments.

A block comment is introduced by {- and the comment finishes with a matching -} (i.e. block
comments may contain block comments and they will behave as desired). See lines 35-39.

Line comments are introduced by --, a line comment finishes at the end of the line. Compare line
10 with line 41.

Type Variables

Haskell uses ordinary variable names for type variables (unlike Miranda which uses *, **, x** etc.).
Haskell type variables must start with a lower case alphabetic character. By convention, they are
a single character, a, b, c etc. Compare lines 1-2 with lines 31-32, and line 9 with line 40.

User-Defined Algebraic Types

Haskell introduces a user-defined algebraic type definition with the data keyword. Haskell type
names and data constructors must start with an uppercase alphabetic character. Haskell uses =
rather than Miranda’s : := to separate the type name from its definition. Compare lines 1-2 with
lines 31-32.

Type Classes

Haskell type classes allow the Haskell programmer to group related types into type classes, poly-
morphic functions can then be constrained to only work on types which belong to particular type
classes. For example, on line 40 bst_insert is constrained to only work for types in the Ord type
class. Ord is a built-in Haskell type class, it is the class of Haskell types that support an ordering.
Read bst_insert’s type signature as:

“for all types a such that a is in the 0rd class bst_insert takes an a and a tree of a and returns a
tree of a”.

Similarly, the Haskell type signature for a function to sort the elements in a list would be:
sort :: Ord a => [a] -> [a]

sort can sort lists of any type as long as that type is in Ord.

A type class has a name and a set of operations. For example, the 0rd class has the operations
compare, <, <=, >=, > max and min. The Haskell programmer can declare a type to be an instance
of a type class by telling the Haskell implementation which type-specific operation to use for each
operation in the class. bst_insert can only be used on types in the Ord class because on line 43
the guard uses the <= operator to decide which sub-tree the new element should be inserted to.

Note that it would be an error to omit the class constraint in the type signature. bst_insert does
not work for all types. If the constraint is omitted Hugs will complain:

ERROR "bst_insert.hs" (line 11): Declared type too general

A type may be a member of many type classes.

A type class may be a sub-class of another type class. For example, Ord is a sub-class of the Eq
class (for types with equality). So all types which are an instance of Ord are also an instance of Eq.

The type constraint in a signature is a list of constraints separated by commas. Each constraint
constrains a type variable. A type variable may be constrained many times. For example:

bst_conv_toset :: (Eq a, Ord a, Show a, Eq b) => Tree a -> (a->b) -> [b]

For an extended example of programming with type classes see appendix B.

Many type classes are provided in the Haskell prelude. Haskell programmers can introduce new
type classes but that is beyond the scope of this tutorial.

Derived Type Classes

For the Haskell prelude’s built-in type classes (Eq, Ord, Enum, Bounded, Show, and Read) Hugs can
automatically generate appropriate instance declarations for user-defined types.

On line 33 the user defined type definition is followed by the deriving keyword and a list of type
classes. The Haskell report defines the rules for the automatically generated instance code (e.g.
constructors are ordered lexicographically by their name).

We recommend that only derivations of Eq and Show should be done this way. Deriving Eq will
allow == and /= to be used on values of that type. Deriving Show will allow the show operator to
convert values of that type to a list of characters (which is required by Hugs to print out values
with that type).

Guards

In Haskell, guards immediately follow the arguments and precede the body expression. A guard is
introduced by the | character. Compare lines 12 and 13 with lines 43 and 44. Note that in Haskell,
otherwise is just a function that returns True.

The next sample function checks a list for adjacent, equal elements.

In Miranda:
<1> [l dup list
<2> || Returns true if two adjacent elements of the list
<3> || are equal.

<4>

<6> dup :: [*] -> bool
<6> dup [] = False

<7> dup [a] = False

<8> dup (a:a:xs) = True
<9> dup (a:b) = dup b

In Haskell:
<30> {- dup list
<31> Returns true if two adjacent elements of the list
<32> are equal.
<33> -}

<34> dup :: Eq a => [a] -> Bool

<35> dup [] = False

<36> dup [_] = False

<37> dup (a:t@(b:_)) = if a==b then True
<39> else dup t

As-patterns

Haskell allows any component of a pattern to be given a name. In line 37 the tail of the input list
is given the name t. t can then be used in the rest of the definition to refer to this part of the list.

The following table gives examples of pattern matching:

| Pattern | Value | Matches |

X8 [123] | xs = [1,2,3]
(x:xs) [1,2,3] x=1

xs = [2,3]
(a:t@(b:c)) | [1,2,34] |a=1

t = [2,3,4]

b=2

c = [3,4]

Wild Cards

In Haskell, it isn’t necessary to give names to parameters or components of patterns that aren’t
required on the right hand side. The programmer can use an underscore instead, as on line 37.

Note that in the Miranda version we had to give names to xs on line 8 and a on lines 7 and 9 even
though we weren’t interested in them. The Haskell version uses underscores instead.

Wild cards and As-Patterns can often be usefully combined, e.g. s@([_]) matches any list with
only one element.
Linear Patterns

In Haskell, parameter names can only appear once in patterns. Thus the implicit equality check in
line 8 is not possible in Haskell. Note that multiple underscores are allowed, each underscore can
match with anything.

Conditional Expressions
Haskell allows conditional expressions: if expy then exp; else exps.

expo is a boolean expression and exp; and erp, must have the same type. The result of this
expression is either exp; or exps, depending on the value of expy. See lines 37-39.

Haskell also supports case expressions, see later.

Note that in Haskell dup can only be used on lists of elements for which equality is defined, hence the
Eq constraint on line 34.

Our next example defines a function to return the word with most vowels from a sentence.

In Miranda:
<1> word == [char]
<2> sentence == [word]
<3>
<4> || max_vowels sentence
<5> || max_vowels returns the word from the sentence with the
<6> || most vowels
<7>
<8> max_vowels :: sentence -> (word, num)
<9> max_vowels [] = ("",0)
<10> max_vowels (word:sent) = (word, num_vowels) , if num_vowels >= best_v
<11> = (best_w, best_v) , otherwise
<12> where
<13> (best_w, best_v) = max_vowels sent || max found in rest of sentence
<14> || isvowel :: char -> bool
<15> isvowel ¢ = "aeiou" $member c
<16> num_vowels = # filter isvowel word
In Haskell:
<30> type Word = [Char]
<31> type Sentence = [Word]
<32>
<33> {- max_vowels sentence
<34> max_vowels returns the word from the sentence with the
<35> most vowels
<36> -}
<37> max_vowels :: Sentence -> (Word, Int)
<38> max_vowels [] = ("",0)
<39> max_vowels (word:sent) = let num_vowels = count_vowels word in
<40> if num_vowels >= best_v
<41> then (word, num_vowels)
<42> else prev
<43> where
<44> prev@(_, best_v) = max_vowels sent -- max found in rest of sentence
<45> count_vowels :: Word -> Int
<46> count_vowels w = length (filter (\c -> c ‘elem‘ "aeiou") w)

Type Synonyms

In Haskell, type synonyms are introduced with the type keyword. Compare lines 1-2 with lines
30-31. Again, Haskell type names must start with a capital letter.

Typed Local Definitions

Local definitions introduced by where clauses can be given types in Haskell. Compare line 45 with
line 14 (the Miranda type definition is commented out!)

Let Expressions

Let expressions introduce one or more local definitions. Let introduced objects can be used in the
right hand sides of the definitions or in the body (the expression following the in keyword).

Unlike a where clause, which is a syntactic entity and can only be attached to function definitions,
a let expression can be used wherever an expression can appear.

An example of let appears on line 39.

Anonymous Functions

In Miranda, all functions have to be named. In Haskell, a function object can be written using
lambda notation. The function definition consists of “\” followed by a list of parameters, a “=>” and
a body expression. The anonymous function (or “lambda expression”) on line 46 takes a character
as argument and returns true if it is an element of the string “aeiou”.

Functions as Operators

To use a two-argument function as an operator in Haskell surround it with backquote characters,
compare the use of elem on line 46 with the use of member on line 15.

Again, note the use of as-patterns and wild cards on line 44. prev refers to the whole tuple result
of the recursive call. The Haskell version of the function can return prev if the current word has less
vowels than our current best. In the Miranda version a new tuple is constructed with the same contents.
Compare line 42 with line 11.

Now, summing the values in a list of abstract expressions.

In Miranda:
<1> expr ::= Num num
<2> | Plus num num
<3> | Minus num num
<4> | Times num num
<5>
<6> |l sum_list expr_list
<7> || Evaluate each expression in the list and return the total.
<8>
<9> sum_list :: [expr] -> num
<10> sum_list []
<11> =0
<12> sum_list (x:xs)
<13> = xval x + sum_list xs
<14> where
<15> xval (Num v) =v
<16> xval (Plus vl v2) = vl + v2
<17> xval (Minus vl v2) = vl - v2
<18> xval (Times vl v2) = vl * v2
In Haskell:
<30> data Expr = Num Int
<31> | Plus Int Int
<32> | Minus Int Int
<33> | Times Int Int
<34>
<35>
<36> {- sum_list expr_list
<37> Evaluate each expression in the list and return the total.
<38> -}
<39> sum_list :: [Expr] -> Int
<40> sum_list []
<41> =0
<42> sum_list (x:xs)
<43> = (case x of
<44> Num v -> v
<45> Plus vl v2 -> vl + v2
<46> Minus vl v2 -> vl - v2
<47> Times vl v2 -> vl * v2) + sum_list xs

Case Expressions

In Haskell, case takes an expression and executes one of a number of alternative expressions, depend-
ing on the expression’s value. As in this example the case expression can perform pattern matching
to select an alternative. In the Miranda version it was necessary to introduce the auxiliary function
xval.

Finally, list comprehensions differ slightly:
A function to calculate a list of Pythagorean Triples in Miranda:

<1> || Calculates a list of pythagorean triples with sides <= n

<2> || In a pythagorean triple the sum of the squares of the first two

<3> || integers equals the square of the third. (cf. right angled triangles)
<4>

<5> pyTriple :: num -> [(num, num, num)]

<6> pyTriple n = [(a,b,c) | a <- [2 .. n]; b <~ [a+l .. n]; c <= [b+1 .. nl;
<7> cxc = a*a + bxb]

and in Haskell:

<30> {- Calculates a list of pythagorean triples with sides <= n

<31> In a pythagorean triple the sum of the squares of the first two

<32> integers equals the square of the third. (cf. right angled triangles)
<33> -}

<34> pyTriple :: Int -> [(Int, Int, Int)]

<35> pyTriple n = [(a,b,c) | a <- [2 .. n], b <= [a+l .. n], ¢ <= [b+1l .. n],
<36> c*xc == axa + b*b]

List Comprehensions

In Haskell, the generators and filters following the vertical bar (|) are seperated by commas, rather
than semi-colons.

As in Miranda, the generators are applied left to right, the leftmost changing most slowly. There
is no equivalent of Miranda’s diagonalisation operator which allows this order to be modified.

10

3 Numbers

In Miranda there is only one numeric type, num, which includes both arbitrary precision integers and
floating point numbers. Miranda’s numeric functions and operators are overloaded so that they can
operate on any combination of numeric types.

In Haskell the situation is more complicated. There are a number of built-in numeric types. Type
classes are used to overload numeric functions and operators appropriately. The following table from the
Haskell Report summarizes the available numeric types:

|| Type | Class | Description ||
Integer | Integral Arbitrary-precision integers
Int Integral Fixed-precision integers
Float RealFloat | Real floating-point, single precision
Double | RealFloat | Real floating-point, double precision

Table 1: Numeric Types

All numeric types derive from class Num. This is a sub-class of Eq and Show, so all numeric types can
be compared for equality and displayed.

The Integral class is for ‘whole-number’ types, it is a sub-class of Num. There are two instances of
Integral, Ints are fixed precision integers (guaranteed to be at least in the range —2%° to 22° — 1) and
Integers are arbitrary-precision integers.

The RealFloat class is for numbers represented by a machine’s floating point representation, i.e. their
precision is limited by the underlying representation. There are two instances of RealFloat, Float uses
single precision and Double uses double precision. In Hugs the precision of Double is the same as the
precision of Float.

Integer literals (e.g. 1, 3898, etc.) in the program text are automatically converted to the correct
numeric type depending on context. So in 3 + 2.73 the 3 will be converted to a Float before the
addition.

The Haskell report also defines classes and types for Complex Numbers and Rational Numbers (i.e.
numbers represented by a ratio of two whole numbers). These are available by importing the appropriate
module.

4 Modules

Although not required by Hugs, all Haskell programs should consist of modules. A module consists of
a module declaration followed by the module’s definitions. The module declaration names the module
and (optionally) lists the names of the module’s top-level definitions which are to be visible to importing
scripts:

module Stack(Stack, empty, push, top, pop, isEmpty) where
data Stack a = MkStack [a]

empty :: Stack a
empty = MkStack []

isEmpty :: Stack a -> Bool
isEmpty (MkStack []) = True

11

isEmpty _ = False

push :: a —-> Stack a -> Stack a
push x (MkStack xs) = MkStack (x:xs)

top :: Stack a -> a
top (MkStack []) = error "top: empty stack"
top (MkStack (x:.)) = x

pop :: Stack a -> Stack a
pop (MkStack []) = error "pop: empty stack"
pop (MkStack (_:xs)) = MkStack xs

count :: Stack a -> Int
count (MkStack xs) = length xs

Only the definitions in parenthesis following the module name will be visible to importing scripts.
Therefore, importing scripts can only create stacks via empty and push (the stack constructor, mkStack
isn’t exported?) and they can’t see the count function.

Modules are used to achieve the same effect as Miranda’s Abstract Data Types (i.e. abstype decla-
rations). As in the above example, put the data type and its operators in a module and only export its
name and externally visible operators.

It is possible to omit the names in parenthesis from the module declaration, in this case all top-level
definitions in the module are exported.

Modules are imported to scripts by the import <module name> declaration. The definitions imported
can be specified by:

e Following the module name with a list of definitions to be imported:
import Stack (Stack, top, isEmpty)

e ‘Hiding’ particular names:
import Stack hiding (empty, push, top)

A module may import other modules. The names thus imported are top-level definitions and may be
re-exported as above.

To avoid name clashes (or to make a script clearer) a module may be imported qualified. All uses
of names from that module must be preceded by the module name and a full stop. For example:

import qualified Stack

initStack = Stack.push (-99) Stack.empty

Although allowed by the Haskell report, recursive imports are not supported by Hugs, (i.e. a module
may not directly, or indirectly, import itself). Also Hugs requires modules to be put in a file with the
same name as the module name, i.e. the Stack module must appear in the file Stack.hs.

2In Haskell, newtype can be used so that the physical allocation of this constructor at run-time can be avoided. See the
Haskell Report for details.

12

5 Enumerations

Any type which is an instance of the Enum class has functions which can ‘step’ from one value to another.
This allows Haskell programmers to use dot dot notation in list generators. For example: [1,3..] is
the list of odd integers; the list [’a’,’c’..?z’] is the list of alternate characters, "acegikmogsuwy".
Programmers can use this notation for their own types by making the appropriate instance declarations,
see the example in appendix B.

6 Map

In Miranda, map is a function over lists. In Haskell, type classes have been used to generalise this to allow
map to work over any collection type, e.g. sets, trees, queues, etc.

Of course, map also works on lists, so map toUpper [’a’..’z’] gives the list of capital letters.

A type class called Functor with the operation map is pre-defined in the Haskell prelude:

class Functor f where
map :: (a>b) >fa-—>fhb

So, we can make map work on the binary search trees defined earlier by declaring them to be an instance
of Functor:

instance TreeType of Functor where
map _ Null = Null
map f (Tree 1 v r) = Tree (map £ 1) (£ v) (map f r)

Now the programmer can double all elements of a tree using map:

doubleTree :: Num a => TreeType a -> TreeType a
doubleTree in_tree = map (*2) in_tree

7 Monads and Lists

Monad is a Haskell built-in class, (the term monad comes from category theory). Values of a monadic
type can be thought of as computations. The operators in the monad class allow these computations to
be sequenced.

class Monad m where

(>>=) ::ma->(a->mb) ->mb
>>) :c:ma->mb->mb
return :ra->ma

m > k = m>= _ >k

The bind operator, >>=, executes a computation, takes its result and feeds it into the next computation.
Monads are a very useful advanced programming technique and can significantly simplify programs:

e They allow parameters such as symbol tables to be passed between computations implicitly.

e Since the programmer implements the sequencing operator it can deal with failing computations or
exceptions.

e They allow a pure functional programming language to support features that are normally thought
of as fundamentally imperative, such as IO (see next section), update-in-place data structures.

13

In Haskell 1.4, Lists are instances of Monads. (This can be useful because it allows list comprehensions
and general list functions (such as fold and filter) to be used on any monadic structure).

Unfortunately, this means that if programmers make errors whilst developing list processing functions
they are likely to receive error messages which refer to monadic types, rather than the lists they thought
they were using. In addition, if they ask Hugs for the type of a list processing function they may well be
confused, for example the type of filter is given as:

filter :: MonadZero b => (a -> Bool) -> b a ->b a

(MonadZero is a sub-class of Monad with a zero operation). This must be borne in mind when
debugging list processing functions.

8 1I/0 in Haskell

Supporting I/O poses two main difficulties for pure functional languages such as Haskell.

The first difficulty is making functions which perform I/O referentially transparent. Referential trans-
parency requires that for any given argument (or set of arguments) a function must always return the
same result (regardless of the context in which it is called). This transparency simplifies reasoning about
programs, simplifies re-use of functional code and allows a compiler a lot of freedom to optimize code.

The C function fgetc() is an example of a function that is not referentially transparent. Recall that
fgetc () has one argument which represents the stream from which it should read data, and it returns the
next character (as an int) from that stream or EOF indicating that the end—of-file has been encountered.
In Haskell terms, the type of fgetc() would be fgetc :: FileHandle -> Int. The problem from a
purely functional point of view is that multiple calls to fgetc() with the same argument may return
different results. The type that we have assigned to fgetc () fails to capture the fact that the function is
interacting with and changing the state of the operating system (each subsequent call to fgetc() causes
(amongst other things) a pointer into an input buffer to be incremented). We call this hidden operation of
fgetc() a side—effect. A mechanism is required which represents the fact that performing I/O introduces
a side—effect into the computation, and that the value of a function which performs I/O encapsulates the
execution of the side—effect.

The second difficulty is ensuring a sequential ordering on the execution of I/O actions. In an imperative
language such as C it is easy to ensure the correct ordering of I/O actions since the order of evaluation is
explicit in the syntax of the language. In a declarative language such as Haskell, a programmer does not
(in general) specify the order in which the program should evaluate. This is also complicated by the fact
that Haskell evaluates a program lazily (or on demand) and so the actual evaluation order of functions is
difficult to predict in advance (without expert knowledge of the implementation). For the most part of
programming in Haskell we don’t care about the order in which the program is evaluated, except when
we are performing computations that have side-effects.

Fortunately Haskell has a powerful facility for supporting I/O which preserves referential transparency
and allows a sequential ordering to be defined for the execution of I/O actions. This facility is called the
I/O Monad.

The ability to perform I/O in a purely functional manner does not come for free, and the use of the
I/O Monad does tend to complicate the definition of a program. The designers of the Haskell language
have noticed that for many tasks which involve I/O it is easier for the programmer to reason about the
execution of I/O in an imperative manner. From this observation came Haskell’s do-notation which
enables the programmer to write code that uses the I/O Monad in a way which resembles the use of
statements in imperative languages. The use of do—notation so closely follows an imperative style that it
leads many people to believe that it is not functional. Bear in mind that do—notation is only syntactic
sugar for more complex underlying functional code.

We illustrate the two styles of sequencing monadic computations with the following example (from A
Gentle Introduction to Haskell) which copies the contents of one file to another.

14

Using the raw Monadic operators:

import IO

main

getAndOpenFile "Copy From: " ReadMode >>= \fromHandle ->
getAndOpenFile "Copy To: " WriteMode >>= \toHandle ->

hGetContents fromHandle >>= \contents ->
hPutStr toHandle contents >>
hClose toHandle >>

putStr "Done.\n"

getAndOpenFile :: String -> I0OMode -> IO Handle
getAndOpenFile prompt mode

putStr prompt >>
getLine >>= \name ->
—-- catch will trap any exceptions caused by opening the file.
-- if we get an exception then ask the user to try again
openFile name mode ‘catch®
(_ -> putStr ("Cannot open " ++ name ++ "\n") >>
getAndOpenFile prompt mode)

Using do notation:
import IO

main
= do

fromHandle <- getAndOpenFile "Copy From: " ReadMode
toHandle <- getAndOpenFile "Copy To: " WriteMode
contents <- hGetContents fromHandle
hPutStr toHandle contents
hClose toHandle
putStr "Done.\n"

getAndOpenFile :: String -> I0OMode -> IO Handle
getAndOpenFile prompt mode
= do
putStr prompt
name <- getLine
—-- catch will trap any exceptions caused by opening the file.
-- if we get an exception then ask the user to try again
openFile name mode ‘catch®
(_ -> do putStr ("Cannot open " ++ name ++ "\n")
getAndOpenFile prompt mode)

Note that, due to Haskell’s lazy evaluation, the list of characters returned by hGetContents will only
be read in as required by hPutStr. Thus the whole input file will not need to be read into memory before
it is written out.

15

We have provided a sample Haskell program which makes use of the I/O Monad in Appendix C.
This program allows the user to interactively explore nodes in a binary tree, and illustrates the use of
do—notation quite extensively.

More information about using the I/O Monad (and monads in general) can be found in A Gentle
Introduction to Haskell.

9 Monomorphism Restriction

Haskell has a rule that at the top level of a module only function definitions can be overloaded. This is
to avoid ‘unintuitive’ recomputations of constants.

For example the following definition of lessThan is overloaded (it can be applied to any arguments
whose type is an instance of 0rd):

lessThan = (<)

ERROR "dmr.hs" (line 7): Unresolved top-level overloading
% Binding : lessThan
*%*x Qutstanding context : Ord b

There are two simple solutions to this restriction. Always provide an explicit type signature:

lessThan :: Ord a => a -> a -> Bool
lessThan = (<)

Or provide the arguments, so lessThan is now a function definition:

lessThan x y = (K) x y
Ideally, do both.

10 Sources

Information in this document has been taken from:

e Report on the Programming Language Haskell, version 1.4, John Peterson and Kevin Hammond
(editors).

e Standard Libraries for the Programming Language Haskell, version 1.4, John Peterson and Kevin
Hammond (editors).

e Differences between Miranda and Haskell (Notes), Bernard Pope.

e Haskell for Miranda Programmers (Slides), Harald Sgndergaard.

11 Further Reading

Most web-based Haskell information can be found by following links from Haskell’s home page:
http:/www.haskell.org/
In particular the following on-line sources are recommended:

e Report on the Programming Language Haskell, version 1.4, John Peterson and Kevin Hammond
(editors).

http://www.cs.mu.oz.au/"bjpop/fpu/haskell-report-1.4-html/index.html

16

e Standard Libraries for the Programming Language Haskell, version 1.4, John Peterson and Kevin
Hammond (editors).

http://www.cs.mu.oz.au/"bjpop/fpu/haskell-library-1.4-html/index.html
e A Gentle Introduction to Haskell, version 1.4, Paul Hudak, John Peterson, Joseph Fasel.

http://www.cs.mu.oz.au/ bjpop/fpu/haskell-tutorial-1.4-html/index.html

The Haskell 98 language definition and library report is often clearer than the 1.4 reports, although
care must be taken that the information is still valid in version 1.4:

e Haskell 98: A Non-strict, Purely Functional Language, Simon L. Peyton Jones, John Hughes (edi-
tors).

http:/www.haskell.org/onlinereport/
e Standard Libraries for Haskell 98, Simon L. Peyton Jones, John Hughes (editors).

http:/www.haskell.org/onlinelibrary/

Many papers on aspects of Haskell can be found from http://www.haskell.org/bookshelf/
The following books on Haskell are currently available:

e Haskell: The Craft of Functional Programming, Simon Thompson, Addison-Wesley, 1996. ISBN
0-201-40357-9.

e Introduction to Functional Programming using Haskell, 2nd edition, Richard Bird, Prentice Hall
Press, 1998, ISBN: 0-13-484346-0.

17

A Common Operators and Built-in Functions

The following tables give the Haskell equivalents (where they exist) of all the Miranda operators and
functions defined in standard environment.

A.1 Miranda operators

Miranda | Haskell | Comment

= == Class Eq

~= /= Class Eq

>= >= Class Ord

> > Class Ord

<= <= Class Ord

< < Class Ord

+ + Class Num

- - Class Num

* * Class Num

/ / Class Fractional

div ‘div¢ Class Integral

mod ‘mod ¢ Class Integral

- - exponent

~ not

& && conjunction

\/ 'l disjunction

: : list cons

++ ++ list append

length

! 1! list indexing

-- \\ list difference (Module List)
function composition

18

A.2

Miranda Functions

Miranda Haskell Comment

abs abs Class Num

and and

arctan atan Class Floating
cjustify No simple equivalent
code ord module Char
concat concat

converse flip

cos cos Class Floating
decode chr module Char

digit isDigit module Char

drop drop

dropwhile | dropWhile Note the capital "W’
e exp 1

entier floor class RealFrac
error error

exp exp class Floating
filter filter

foldl foldl

foldll foldll

foldr foldr

foldril foldril

fst fst

hd head

id id

index No simple equivalent
init init

integer integer x = x == fromIntegral (truncate x)

iterate iterate

last last

lay unlines

layn No simple equivalent
letter isAlpha module Char

limit No simple equivalent
lines lines

ljustify No simple equivalent
log log class Floating

log10 logl0 n = logBase 10 n class Floating

map map class Functor

map2 zipWith class Functor

max maximum

max2 max

member elem Args different order
merge No simple equivalent
min minimum

min?2 min

mkset nub module List

19

Miranda Haskell Comment
neg negate class Num
numval read

or or

pi pi class Floating
postfix postfix x xs = xs ++ [x]

product product

rep replicate

repeat repeat

reverse reverse

rjustify No simple equivalent
scan scanl

shownum show

sin sin class Floating
snd snd

sort sort module List
spaces spaces n = repeat n ’ ’

sqrt sqrt class Floating
sum sum

take take

takewhile | takeWhile Note the capital "W’
tl tail

undef error ‘‘undefined’’

until until

zip miranda zip (a,b) = zip a b

zip2 zip

zip3 zip3

20

B Type Classes by Example

In this this section we present the use of Haskell type classes by example. We show how the Haskell
system can automatically derive some types to be instances of some classes, and we show how types can
be manually made instances of a class. We use the standard type class Enum throughout this discussion
because it is small enough for a full exposition, yet rich enough to be of practical use.

Programmers can define their own type classes, but this is beyond the scope of this tutorial.

B.1 The Enum type class

The Enum type class is useful for any type whose members can be enumerated. For example the character
type (Char) is enumerable and is a member of Enum, however functions (of type a -> b, for example)
cannot be enumerated, and therefore cannot be a member of Enum.

There are two basic benefits of an enumerable type being a member of Enum. Firstly, the class ensures
a consistent manner for mapping integers to members of the type and vice versa. Secondly, the class
enables the use of dot dot notation in list generators. For example, [1..] produces the infinite successive
list of integers starting at the number 1.

There are six functions which must be defined for a type if it is to be accepted as an instance of Enum.
They are:

1. toEnum :: Int -> a, maps an integer to a unique member of the enumerable type.
2. fromEnum :: a -> Int, maps an element of the enumerable type to a unique integer.
3. enumFrom :: a -> [al, enumerates all members of the enumerable type in successive order start-

ing at a particular member ([1..]).

4. enumFromThen :: a -> a -> [a], enumerates some members of the enumerable type, starting at
a particular member and stepping by a particular distance between successive members ([1,3..]).

5. enumFromTo :: a -> a -> [a], similar to enumFrom, except the enumeration is bounded by a
particular member ([1..10]).

6. enumFromThenTo :: a -> a -> a -> [a], similar to enumFromThen, except the enumeration is
bounded by a particular member ([1,3..10]).

Note that the last two functions (enumFromTo and enumFromThenTo), are given default definitions in
Enum as below, and so do not have to be specifically provided by the programmer (although, programmers
may provide alternate definitions if they so desire):

enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThenTo x y z = map toEnum [fromEnum x, fromEnum y .. fromEnum z]

Therefore, there are actually only four functions that must be introduced to make a type a member of

Enum.

B.2 A basic enumerated type, and automatic inference

In many cases we may declare a new type whose members are all listed in the definition of the type. In
other words, the type forms a finite countable set of values. For example, we may be interested in a type
which names the days of the week:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

21

For such types we can ask the Haskell system to automatically make them an instance of Enum.
Essentially, this requires the Haskell system to generate the four necessary functions mentioned above.
For the type Day, this is a trivial matter of mapping each member of the type to an integer consecutively
from zero to six.

To ask the Haskell system to derive Day to be a member of Enum, we simply write:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving Enum

We would also like to be able to display members of the type, and so Day must be made an instance
of the Show type class. This too can be derived by Haskell (at least, for types such as Day), and so we
extend our definition of Day a little further:

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
deriving (Enum, Show)

Having made Day an instance of Enum and Show we can do interesting things as in the following:

Hugs> fromEnum Wed

3

Hugs> (toEnum 6)::Day

Sat

Hugs> [Sun ..]

[Sun, Mon, Tue, Wed, Thu, Fri, Sat]
Hugs> [Mon, Wed ..]

[Mon, Wed, Fril

Hugs> [Mon .. Thul

[Mon, Tue, Wed, Thul

B.3 A more complex enumerable type

Suppose we would like to model the natural numbers using only the basis value Zero and the successor
function S. From Zero and S we can recursively enumerate the set of natural numbers. For example the
number four is represented by the application S (S (S (S Zero))). We can implement this model in
Haskell very succinctly using the type Nat, defined below:

data Nat = S Nat | Zero
deriving Show

Addition and multiplication on this datatype (which reflect the normal meaning for addition and
multiplication on natural numbers) can be defined in the following manner:

addNat :: Nat -> Nat -> Nat
addNat m Zero = m
addNat m (S n) = S (addNat m n)

multNat :: Nat -> Nat -> Nat
multNat _ Zero = Zero
multNat m (S n)

= addNat m (multNat m n)

For example, we can perform the following operations:

22

Hugs> addNat (S Zero) (S (S Zero))

S (S8 (S Zero))

Hugs> multNat (S (S (S Zero))) (S (S Zero))
S (S (8 (S (s (5 Zero)))))

We know that the members of the Nat type are (recursively) enumerable and so we would like to
make Nat an instance of Enum. We can’t ask the Haskell system to automatically derive this instance
because such derivation only works when all members of the type are listed in the definition of the type.
Therefore, we have to manually make Nat an instance of Enum by defining the four required functions
mentioned above (toEnum, fromEnum, enumFrom, enumFromThen).

First we must give an instance declaration, like so:

instance Enum Nat where
toEnum = intToNat
fromEnum = natToInt
enumFrom = natFrom
enumFromThen = natFromThen

Then we must implement the various required functions.

The function toEnum requires a mapping from the integers to members of the new type. We implement
it in the function intToNat below. It is obvious that 0 maps to Zero and all positive integers map to
a corresponding sequence of S applications. Since the natural numbers do not cover negative values, we
map negative integers to the natural number that corresponds to the absolute value of the integer. An
alternative option would have been to return an error if a negative integer was supplied as an argument,
but that complicates the discussion somewhat.

intToNat :: Int -> Nat

intToNat n
| n >0 =95 (intToNat (n - 1))
| n == 0 = Zero
| otherwise = intToNat (-n)

The function fromEnum has a fairly obvious task: map each member of the enumerated type to a
unique integer. We define this mapping using the function natToInt below:

natToInt :: Nat -> Int
natToInt Zero = 0
natToInt (S n) = 1 + (natToInt n)

The function enumFrom is implemented by a call to natFrom. Note that we do addition directly upon
values of type Nat (using addNat), rather than converting them to integers first and then performing
the addition. We do so for efficiency reasons. Due to the way addNat is defined the cost of adding two
natural numbers is proportional to the magnitude of the second value in the addition. However, if we
were to convert both natural numbers to integers first and then add them, the cost would be proportional
to twice the sum of the magnitudes of both numbers (due to the cost of converting them to integers and
to the cost of converting the result back to a natural number). If we are sure that the second number in
the addition is a small natural number (i.e. S Zero in this case) the cost of the addition is negligible.

natFrom :: Nat -> [Nat]
natFrom n
=n : (natFrom (addNat n (S Zero)))

23

The last required function, enumFromThen, is implemented by a call to natFromThen. There are
three general cases to consider when generating an enumeration with a step value. Each case is handled
separately by a guard in the definition of natFromThen. The first case occurs when the first value of the
enumeration and the next value are the same. In such a case we simply generate an infinite list of the
first value. The second case occurs when the second value is less than the first. It is possible to generate
a finite list of naturals of decreasing magnitude, but an infinite list is not possible because the naturals
do not cover negative values. To simplify the discussion we ban decreasing enumerations and report an
error if an attempt is made to generate such a list. The third case occurs when the second value is strictly
greater in magnitude than the first value, in such a case we call the function natFromThen’ to generate
the list.

natFromThen :: Nat -> Nat -> [Nat]
natFromThen first second
| fromEnum first == fromEnum second
= infiniteFirsts
| fromEnum second < fromEnum first
= error "the second value is less than the first"
| otherwise = natFromThen’ first stepSize

where

infiniteFirsts = first : infiniteFirsts

stepSize = toEnum ((fromEnum second) - (fromEnum first))
natFromThen’ :: Nat -> Nat -> [Nat]

natFromThen’ next step
= next : (natFromThen’ (addNat next step) step)

After all the hard work, we can finally make use of the fact that Nat is now an instance of Enum:

Hugs> map fromEnum (take 10 [Zero ..])

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Hugs> putStr (unlines (map show [intToNat 4, intToNat 8 .. intToNat 16]))
S (S (8 (S Zero)))

S (S (S (S (S (S (S (S Zero)))))))

S (S (58 (5 (5 (5 (8 (s (5 (5 (5 (52Zero))))NINN

S (B (B (B (585 (58(58 (5 (5 (58 (5 (5 (582er0))))INININNM)

24

C DMonadic 10 Example

S —
Author: Bernard Pope
Date: 22/1/98
Notes: Fun with Haskell Monadic I0. Contains code for

building a balanced BST from a list, and code for
interactively exploring a Binary Search Tree.

The nodes in the tree must be an instance of the
Show class.

Usage: For example:
exploreTree (bTree [1..10])

1/L for navigating left, r/R for navigating right.
u/U for going back up one level in the tree.

q/Q for quiting the navigation.

Any other key will be ignored and the choice of
direction will be asked for again.

___ }
module ExploreTree (bTree, Tree, exploreTree) where
{-
Standard Binary Tree
-}
data Tree a = Node (Tree a) a (Tree a) | NilTree
deriving (Show)
{-
function: bTree, bTree’
description: builds a balanced binary tree from a list of elements.
-}
bTree :: [a] -> Tree a
bTree list
= bTree’ list (length list)
bTree’ :: [al -> Int -> Tree a

25

bTree’ [] = NilTree

bTree’ list@(x:xs) listLength
= (Node (bTree’ left leftLength) mid (bTree’ right rightLength))
where
(left, mid:right) = splitAt leftLength list
leftLength = listLength ‘div‘ 2
rightLength = listLength - (leftLength + 1)

{-
enumerated type for the user’s desired action.

-}

data Direction = GoLeft | GoRight | GoUp | Quit

{-
function: exploreTree
description: interactively traverse a binary tree using the IO
monad.
Calls the function exploreTree’ which remembers the
ancestor nodes of the current node in the tree so
that it can traverse upwards.
-}
exploreTree :: Show a => Tree a -> I0 ()

exploreTree t
= exploreTree’ [] t

{-
function: exploreTree’
description: Takes a list of ancestor nodes (as a stack)
and the current node.
Prints the current node then prompts the user for
the next direction to explore (or quit).
-}
exploreTree’ :: Show a => [Tree a] -> Tree a -> I0 ()

-- hit a leaf node (Nil). Can only quit or go back up the tree.
exploreTree’ parents NilTree

26

= do
putStr "NilTree\n"
r <- response

case r of
GoUp -> upTree parents NilTree
Quit -> return ()

-> do
putStr "Can only go up\n"
exploreTree’ parents NilTree

-- an internal node. Can go left/right, up or quit.
exploreTree’ parents t@(Node left node right)

= do
putStr (show node)
putStr "\n"
r <- response
case r of
GoLeft -> exploreTree’ (t:parents) left
GoRight -> exploreTree’ (t:parents) right
GoUp -> upTree parents t
Quit -> return ()
{-
function: upTree
description: Takes a list of ancestors (as a stack) and the
current node.
Traverses up the tree one level (if possible).
-}
upTree :: Show a => [Tree al -> Tree a -> I0 QO

-- no ancestors, we must be at the top of the tree, re-call
-- exploreTree’ with the current node.
upTree [] node
= do
putStr "Can’t go up any further\n"
exploreTree’ [] node

-- at least one ancestor, call exploreTree with the parent and its
-— ancestors.

upTree (a:as) node
= exploreTree’ as a

function: response

27

description: get the response from the user as to which direction
they would like to explore.

-}
response :: I0 Direction

response
= do
putStr "(L)eft, (R)ight, (U)p or (Q uit?\n"
c <- getline
case c of
"1" -> return Goleft
"L" -> return Goleft
"r" -> return GoRight
"R" -> return GoRight
"q" -> return Quit
"Q" -> return Quit
"u" -> return GoUp
"U" -> return GoUp
-> response -- unknown command, call response again

28

