
Haskell for Miranda ProgrammersKevin GlynnBernard Pope(fkeving,bjpopg@cs.mu.oz.au)Technical Report TR1999/14Department of Computer Scienceand Software Engineering,The University of Melbourne,Parkville, Vic. 3052, AustraliaJune 22, 1999

1

1 IntroductionThis document is designed to help programmers with a knowledge of Miranda1 move to Haskell as quicklyand as painlessly as possible. It aims for conciseness over completeness. Pointers to further informationabout Haskell can be found in section 11. In particular, you are encouraged to read A Gentle Introductionto Haskell, which covers the complete language and includes many examples.According to the Haskell Language Report, the Haskell project started in 1987, at a meeting heldat FPCA 87. It was believed that the advancement of functional programming was being sti
ed by thewide variety of languages available. There were more than a dozen lazy, purely functional languages andnone had widespread support (except maybe Miranda, which was already old, a commercial product andtherefore considered unsuitable for the purposes of research and teaching).A committee was formed to design the language. The name Haskell was chosen in honour of themathematician Haskell Curry, whose research forms part of the theoretical basis upon which functionallanguages are implemented. Haskell is a modern, consistent language with few rough edges. It is widelyused and widely implemented within the functional programming community. It has largely supersededMiranda for teaching in universities, not least due to the robust, freely available implementations.Haskell has provoked much research and discussion into the desirable properties of a modern functionallanguage and it has undergone a number of revisions. This document describes version 1.4 of the language.Version 1.4 has recently undergone some minor revisions aimed at making it more suitable for teaching.The resulting language is known as Haskell 98 and the �rst conformant implementations are now available.All major implementations of Haskell have committed to supporting Haskell 98 for the forseeable future,therefore it can be taught with con�dence and it is hoped that this will encourage more teaching materialsand text books to be developed.The rest of this document describes di�erences, enhancements and omissions of Haskell 1.4 whencompared with Miranda.Appendix A gives the Haskell equivalent operators and functions for the functions in the standardMiranda environment.2 All You Need to KnowIn this section we aim to give a tutorial introduction to all the information Miranda programmers shouldneed to get started programming in Haskell. Later sections cover important Haskell extensions in moredetail.Just like Miranda, Haskell is a lazy, functional language with polymorphic higher-order functions,algebraic data types and list comprehensions. Also like Miranda, it is layout-sensitive: it uses the so-called o�-side rule to delimit de�nitions. There is a widely used, high quality interpreter available onmany platforms (Hugs) and many compilers.Unlike Miranda, Haskell supports overloading of function names (ad-hoc polymorphism via typeclasses) and has an extensive module system. Haskell is pure, even for IO. Haskell comes with a largenumber of modules including support for arrays, complex numbers, in�nite precision integers, operatingsystem interaction and concurrency. In addition, the syntax of Haskell o�ers a number of conveniences notfound in Miranda (such as anonymous functions, let expressions, if-then-else expressions, case expressions,as patterns, user-de�ned operators, `wild-card' parameters, etc.)Haskell's standard prelude (equivalent to Miranda's standard environment) de�nes a large number offunctions, types and operators. These are automatically available to Haskell programmers.We now compare and contrast the two languages by �rst introducing a number of examples writtenin both languages.1\Miranda" is a trademark of Research Software, Ltd. 2

Firstly tree insert in Miranda:<1> tree_type * ::= Null |<2> Tree (tree_type *) * (tree_type *)<3><4> || bst_insert new bstree<5> || To insert a new item into its correct position in a BST.<6> || If the new item duplicates an existing item in the tree,<7> || insert into left subtree.<8><9> bst_insert :: * -> tree_type * -> tree_type *<10> bst_insert new Null = Tree Null new Null || tree is empty so create singleton tree<11> bst_insert new (Tree ltree val rtree)<12> = Tree (bst_insert new ltree) val rtree, if new <= val<13> = Tree ltree val (bst_insert new rtree), otherwiseand now in Haskell:<31> data TreeType a = Null |<32> Tree (TreeType a) a (TreeType a)<33> deriving (Eq, Ord, Read, Show)<34><35> {- bst_insert new bstree<36> To insert a new item into its correct position in a BST.<37> If the new item duplicates an existing item in the tree,<38> insert into left subtree.<39> -}<40> bst_insert :: Ord a => a -> TreeType a -> TreeType a<41> bst_insert new Null = Tree Null new Null -- tree is empty so create singleton tree<42> bst_insert new (Tree ltree val rtree)<43> | new <= val = Tree (bst_insert new ltree) val rtree<44> | otherwise = Tree ltree val (bst_insert new rtree)CommentsHaskell has two comment styles: block comments and line comments.A block comment is introduced by f- and the comment �nishes with a matching -g (i.e. blockcomments may contain block comments and they will behave as desired). See lines 35-39.Line comments are introduced by --, a line comment �nishes at the end of the line. Compare line10 with line 41.Type VariablesHaskell uses ordinary variable names for type variables (unlike Miranda which uses *, **, *** etc.).Haskell type variables must start with a lower case alphabetic character. By convention, they area single character, a, b, c etc. Compare lines 1-2 with lines 31-32, and line 9 with line 40.User-De�ned Algebraic TypesHaskell introduces a user-de�ned algebraic type de�nition with the data keyword. Haskell typenames and data constructors must start with an uppercase alphabetic character. Haskell uses =rather than Miranda's ::= to separate the type name from its de�nition. Compare lines 1-2 withlines 31-32.
3

Type ClassesHaskell type classes allow the Haskell programmer to group related types into type classes, poly-morphic functions can then be constrained to only work on types which belong to particular typeclasses. For example, on line 40 bst insert is constrained to only work for types in the Ord typeclass. Ord is a built-in Haskell type class, it is the class of Haskell types that support an ordering.Read bst insert's type signature as:\for all types a such that a is in the Ord class bst insert takes an a and a tree of a and returns atree of a".Similarly, the Haskell type signature for a function to sort the elements in a list would be:sort :: Ord a => [a] -> [a]sort can sort lists of any type as long as that type is in Ord.A type class has a name and a set of operations. For example, the Ord class has the operationscompare, <, <=, >=, >, max and min. The Haskell programmer can declare a type to be an instanceof a type class by telling the Haskell implementation which type-speci�c operation to use for eachoperation in the class. bst insert can only be used on types in the Ord class because on line 43the guard uses the <= operator to decide which sub-tree the new element should be inserted to.Note that it would be an error to omit the class constraint in the type signature. bst insert doesnot work for all types. If the constraint is omitted Hugs will complain:ERROR "bst_insert.hs" (line 11): Declared type too generalA type may be a member of many type classes.A type class may be a sub-class of another type class. For example, Ord is a sub-class of the Eqclass (for types with equality). So all types which are an instance of Ord are also an instance of Eq.The type constraint in a signature is a list of constraints separated by commas. Each constraintconstrains a type variable. A type variable may be constrained many times. For example:bst_conv_toset :: (Eq a, Ord a, Show a, Eq b) => Tree a -> (a->b) -> [b]For an extended example of programming with type classes see appendix B.Many type classes are provided in the Haskell prelude. Haskell programmers can introduce newtype classes but that is beyond the scope of this tutorial.Derived Type ClassesFor the Haskell prelude's built-in type classes (Eq, Ord, Enum, Bounded, Show, and Read) Hugs canautomatically generate appropriate instance declarations for user-de�ned types.On line 33 the user de�ned type de�nition is followed by the deriving keyword and a list of typeclasses. The Haskell report de�nes the rules for the automatically generated instance code (e.g.constructors are ordered lexicographically by their name).We recommend that only derivations of Eq and Show should be done this way. Deriving Eq willallow == and /= to be used on values of that type. Deriving Show will allow the show operator toconvert values of that type to a list of characters (which is required by Hugs to print out valueswith that type).GuardsIn Haskell, guards immediately follow the arguments and precede the body expression. A guard isintroduced by the | character. Compare lines 12 and 13 with lines 43 and 44. Note that in Haskell,otherwise is just a function that returns True.4

The next sample function checks a list for adjacent, equal elements.In Miranda:<1> || dup list<2> || Returns true if two adjacent elements of the list<3> || are equal.<4><5> dup :: [*] -> bool<6> dup [] = False<7> dup [a] = False<8> dup (a:a:xs) = True<9> dup (a:b) = dup bIn Haskell:<30> {- dup list<31> Returns true if two adjacent elements of the list<32> are equal.<33> -}<34> dup :: Eq a => [a] -> Bool<35> dup [] = False<36> dup [_] = False<37> dup (a:t@(b:_)) = if a==b then True<39> else dup tAs-patternsHaskell allows any component of a pattern to be given a name. In line 37 the tail of the input listis given the name t. t can then be used in the rest of the de�nition to refer to this part of the list.The following table gives examples of pattern matching:Pattern Value Matchesxs [1,2,3] xs = [1,2,3](x:xs) [1,2,3] x = 1xs = [2,3](a:t@(b:c)) [1,2,3,4] a = 1t = [2,3,4]b = 2c = [3,4]Wild CardsIn Haskell, it isn't necessary to give names to parameters or components of patterns that aren'trequired on the right hand side. The programmer can use an underscore instead, as on line 37.Note that in the Miranda version we had to give names to xs on line 8 and a on lines 7 and 9 eventhough we weren't interested in them. The Haskell version uses underscores instead.Wild cards and As-Patterns can often be usefully combined, e.g. s@([]) matches any list withonly one element.Linear PatternsIn Haskell, parameter names can only appear once in patterns. Thus the implicit equality check inline 8 is not possible in Haskell. Note that multiple underscores are allowed, each underscore canmatch with anything. 5

Conditional ExpressionsHaskell allows conditional expressions: if exp0 then exp1 else exp2.exp0 is a boolean expression and exp1 and exp2 must have the same type. The result of thisexpression is either exp1 or exp2, depending on the value of exp0. See lines 37-39.Haskell also supports case expressions, see later.Note that in Haskell dup can only be used on lists of elements for which equality is de�ned, hence theEq constraint on line 34.

6

Our next example de�nes a function to return the word with most vowels from a sentence.In Miranda:<1> word == [char]<2> sentence == [word]<3><4> || max_vowels sentence<5> || max_vowels returns the word from the sentence with the<6> || most vowels<7><8> max_vowels :: sentence -> (word, num)<9> max_vowels [] = ("",0)<10> max_vowels (word:sent) = (word, num_vowels) , if num_vowels >= best_v<11> = (best_w, best_v) , otherwise<12> where<13> (best_w, best_v) = max_vowels sent || max found in rest of sentence<14> || isvowel :: char -> bool<15> isvowel c = "aeiou" $member c<16> num_vowels = # filter isvowel wordIn Haskell:<30> type Word = [Char]<31> type Sentence = [Word]<32><33> {- max_vowels sentence<34> max_vowels returns the word from the sentence with the<35> most vowels<36> -}<37> max_vowels :: Sentence -> (Word, Int)<38> max_vowels [] = ("",0)<39> max_vowels (word:sent) = let num_vowels = count_vowels word in<40> if num_vowels >= best_v<41> then (word, num_vowels)<42> else prev<43> where<44> prev@(_, best_v) = max_vowels sent -- max found in rest of sentence<45> count_vowels :: Word -> Int<46> count_vowels w = length (filter (\c -> c `elem` "aeiou") w)Type SynonymsIn Haskell, type synonyms are introduced with the type keyword. Compare lines 1-2 with lines30-31. Again, Haskell type names must start with a capital letter.Typed Local De�nitionsLocal de�nitions introduced by where clauses can be given types in Haskell. Compare line 45 withline 14 (the Miranda type de�nition is commented out!)Let ExpressionsLet expressions introduce one or more local de�nitions. Let introduced objects can be used in theright hand sides of the de�nitions or in the body (the expression following the in keyword).Unlike a where clause, which is a syntactic entity and can only be attached to function de�nitions,a let expression can be used wherever an expression can appear.An example of let appears on line 39. 7

Anonymous FunctionsIn Miranda, all functions have to be named. In Haskell, a function object can be written usinglambda notation. The function de�nition consists of \n" followed by a list of parameters, a \->" anda body expression. The anonymous function (or \lambda expression") on line 46 takes a characteras argument and returns true if it is an element of the string \aeiou".Functions as OperatorsTo use a two-argument function as an operator in Haskell surround it with backquote characters,compare the use of elem on line 46 with the use of member on line 15.Again, note the use of as-patterns and wild cards on line 44. prev refers to the whole tuple resultof the recursive call. The Haskell version of the function can return prev if the current word has lessvowels than our current best. In the Miranda version a new tuple is constructed with the same contents.Compare line 42 with line 11.

8

Now, summing the values in a list of abstract expressions.In Miranda:<1> expr ::= Num num<2> | Plus num num<3> | Minus num num<4> | Times num num<5><6> || sum_list expr_list<7> || Evaluate each expression in the list and return the total.<8><9> sum_list :: [expr] -> num<10> sum_list []<11> = 0<12> sum_list (x:xs)<13> = xval x + sum_list xs<14> where<15> xval (Num v) = v<16> xval (Plus v1 v2) = v1 + v2<17> xval (Minus v1 v2) = v1 - v2<18> xval (Times v1 v2) = v1 * v2In Haskell:<30> data Expr = Num Int<31> | Plus Int Int<32> | Minus Int Int<33> | Times Int Int<34><35><36> {- sum_list expr_list<37> Evaluate each expression in the list and return the total.<38> -}<39> sum_list :: [Expr] -> Int<40> sum_list []<41> = 0<42> sum_list (x:xs)<43> = (case x of<44> Num v -> v<45> Plus v1 v2 -> v1 + v2<46> Minus v1 v2 -> v1 - v2<47> Times v1 v2 -> v1 * v2) + sum_list xsCase ExpressionsIn Haskell, case takes an expression and executes one of a number of alternative expressions, depend-ing on the expression's value. As in this example the case expression can perform pattern matchingto select an alternative. In the Miranda version it was necessary to introduce the auxiliary functionxval.
9

Finally, list comprehensions di�er slightly:A function to calculate a list of Pythagorean Triples in Miranda:<1> || Calculates a list of pythagorean triples with sides <= n<2> || In a pythagorean triple the sum of the squares of the first two<3> || integers equals the square of the third. (cf. right angled triangles)<4><5> pyTriple :: num -> [(num, num, num)]<6> pyTriple n = [(a,b,c) | a <- [2 .. n]; b <- [a+1 .. n]; c <- [b+1 .. n];<7> c*c = a*a + b*b]and in Haskell:<30> {- Calculates a list of pythagorean triples with sides <= n<31> In a pythagorean triple the sum of the squares of the first two<32> integers equals the square of the third. (cf. right angled triangles)<33> -}<34> pyTriple :: Int -> [(Int, Int, Int)]<35> pyTriple n = [(a,b,c) | a <- [2 .. n], b <- [a+1 .. n], c <- [b+1 .. n],<36> c*c == a*a + b*b]List ComprehensionsIn Haskell, the generators and �lters following the vertical bar (|) are seperated by commas, ratherthan semi-colons.As in Miranda, the generators are applied left to right, the leftmost changing most slowly. Thereis no equivalent of Miranda's diagonalisation operator which allows this order to be modi�ed.

10

3 NumbersIn Miranda there is only one numeric type, num, which includes both arbitrary precision integers and
oating point numbers. Miranda's numeric functions and operators are overloaded so that they canoperate on any combination of numeric types.In Haskell the situation is more complicated. There are a number of built-in numeric types. Typeclasses are used to overload numeric functions and operators appropriately. The following table from theHaskell Report summarizes the available numeric types:Type Class DescriptionInteger Integral Arbitrary-precision integersInt Integral Fixed-precision integersFloat RealFloat Real
oating-point, single precisionDouble RealFloat Real
oating-point, double precisionTable 1: Numeric TypesAll numeric types derive from class Num. This is a sub-class of Eq and Show, so all numeric types canbe compared for equality and displayed.The Integral class is for `whole-number' types, it is a sub-class of Num. There are two instances ofIntegral, Ints are �xed precision integers (guaranteed to be at least in the range �229 to 229 � 1) andIntegers are arbitrary-precision integers.The RealFloat class is for numbers represented by a machine's
oating point representation, i.e. theirprecision is limited by the underlying representation. There are two instances of RealFloat, Float usessingle precision and Double uses double precision. In Hugs the precision of Double is the same as theprecision of Float.Integer literals (e.g. 1, 3898, etc.) in the program text are automatically converted to the correctnumeric type depending on context. So in 3 + 2.73 the 3 will be converted to a Float before theaddition.The Haskell report also de�nes classes and types for Complex Numbers and Rational Numbers (i.e.numbers represented by a ratio of two whole numbers). These are available by importing the appropriatemodule.4 ModulesAlthough not required by Hugs, all Haskell programs should consist of modules. A module consists ofa module declaration followed by the module's de�nitions. The module declaration names the moduleand (optionally) lists the names of the module's top-level de�nitions which are to be visible to importingscripts:module Stack(Stack, empty, push, top, pop, isEmpty) wheredata Stack a = MkStack [a]empty :: Stack aempty = MkStack []isEmpty :: Stack a -> BoolisEmpty (MkStack []) = True 11

isEmpty _ = Falsepush :: a -> Stack a -> Stack apush x (MkStack xs) = MkStack (x:xs)top :: Stack a -> atop (MkStack []) = error "top: empty stack"top (MkStack (x:_)) = xpop :: Stack a -> Stack apop (MkStack []) = error "pop: empty stack"pop (MkStack (_:xs)) = MkStack xscount :: Stack a -> Intcount (MkStack xs) = length xsOnly the de�nitions in parenthesis following the module name will be visible to importing scripts.Therefore, importing scripts can only create stacks via empty and push (the stack constructor, mkStackisn't exported2) and they can't see the count function.Modules are used to achieve the same e�ect as Miranda's Abstract Data Types (i.e. abstype decla-rations). As in the above example, put the data type and its operators in a module and only export itsname and externally visible operators.It is possible to omit the names in parenthesis from the module declaration, in this case all top-levelde�nitions in the module are exported.Modules are imported to scripts by the import <module name> declaration. The de�nitions importedcan be speci�ed by:� Following the module name with a list of de�nitions to be imported:import Stack (Stack, top, isEmpty)� `Hiding' particular names:import Stack hiding (empty, push, top)A module may import other modules. The names thus imported are top-level de�nitions and may bere-exported as above.To avoid name clashes (or to make a script clearer) a module may be imported qualified. All usesof names from that module must be preceded by the module name and a full stop. For example:import qualified StackinitStack = Stack.push (-99) Stack.emptyAlthough allowed by the Haskell report, recursive imports are not supported by Hugs, (i.e. a modulemay not directly, or indirectly, import itself). Also Hugs requires modules to be put in a �le with thesame name as the module name, i.e. the Stack module must appear in the �le Stack.hs.2In Haskell, newtype can be used so that the physical allocation of this constructor at run-time can be avoided. See theHaskell Report for details. 12

5 EnumerationsAny type which is an instance of the Enum class has functions which can `step' from one value to another.This allows Haskell programmers to use dot dot notation in list generators. For example: [1,3..] isthe list of odd integers; the list ['a','c'..'z'] is the list of alternate characters, "acegikmoqsuwy".Programmers can use this notation for their own types by making the appropriate instance declarations,see the example in appendix B.6 MapIn Miranda, map is a function over lists. In Haskell, type classes have been used to generalise this to allowmap to work over any collection type, e.g. sets, trees, queues, etc.Of course, map also works on lists, so map toUpper ['a'..'z'] gives the list of capital letters.A type class called Functor with the operation map is pre-de�ned in the Haskell prelude:class Functor f wheremap :: (a -> b) -> f a -> f bSo, we can make map work on the binary search trees de�ned earlier by declaring them to be an instanceof Functor:instance TreeType of Functor wheremap _ Null = Nullmap f (Tree l v r) = Tree (map f l) (f v) (map f r)Now the programmer can double all elements of a tree using map:doubleTree :: Num a => TreeType a -> TreeType adoubleTree in_tree = map (*2) in_tree7 Monads and ListsMonad is a Haskell built-in class, (the term monad comes from category theory). Values of a monadictype can be thought of as computations. The operators in the monad class allow these computations tobe sequenced.class Monad m where(>>=) :: m a -> (a -> m b) -> m b(>>) :: m a -> m b -> m breturn :: a -> m am >> k = m >>= _ -> kThe bind operator, >>=, executes a computation, takes its result and feeds it into the next computation.Monads are a very useful advanced programming technique and can signi�cantly simplify programs:� They allow parameters such as symbol tables to be passed between computations implicitly.� Since the programmer implements the sequencing operator it can deal with failing computations orexceptions.� They allow a pure functional programming language to support features that are normally thoughtof as fundamentally imperative, such as IO (see next section), update-in-place data structures.13

In Haskell 1.4, Lists are instances of Monads. (This can be useful because it allows list comprehensionsand general list functions (such as fold and �lter) to be used on any monadic structure).Unfortunately, this means that if programmers make errors whilst developing list processing functionsthey are likely to receive error messages which refer to monadic types, rather than the lists they thoughtthey were using. In addition, if they ask Hugs for the type of a list processing function they may well beconfused, for example the type of �lter is given as:filter :: MonadZero b => (a -> Bool) -> b a -> b a(MonadZero is a sub-class of Monad with a zero operation). This must be borne in mind whendebugging list processing functions.8 I/O in HaskellSupporting I/O poses two main di�culties for pure functional languages such as Haskell.The �rst di�culty is making functions which perform I/O referentially transparent. Referential trans-parency requires that for any given argument (or set of arguments) a function must always return thesame result (regardless of the context in which it is called). This transparency simpli�es reasoning aboutprograms, simpli�es re-use of functional code and allows a compiler a lot of freedom to optimize code.The C function fgetc() is an example of a function that is not referentially transparent. Recall thatfgetc() has one argument which represents the stream from which it should read data, and it returns thenext character (as an int) from that stream or EOF indicating that the end{of{�le has been encountered.In Haskell terms, the type of fgetc() would be fgetc :: FileHandle -> Int. The problem from apurely functional point of view is that multiple calls to fgetc() with the same argument may returndi�erent results. The type that we have assigned to fgetc() fails to capture the fact that the function isinteracting with and changing the state of the operating system (each subsequent call to fgetc() causes(amongst other things) a pointer into an input bu�er to be incremented). We call this hidden operation offgetc() a side{e�ect. A mechanism is required which represents the fact that performing I/O introducesa side{e�ect into the computation, and that the value of a function which performs I/O encapsulates theexecution of the side{e�ect.The second di�culty is ensuring a sequential ordering on the execution of I/O actions. In an imperativelanguage such as C it is easy to ensure the correct ordering of I/O actions since the order of evaluation isexplicit in the syntax of the language. In a declarative language such as Haskell, a programmer does not(in general) specify the order in which the program should evaluate. This is also complicated by the factthat Haskell evaluates a program lazily (or on demand) and so the actual evaluation order of functions isdi�cult to predict in advance (without expert knowledge of the implementation). For the most part ofprogramming in Haskell we don't care about the order in which the program is evaluated, except whenwe are performing computations that have side-e�ects.Fortunately Haskell has a powerful facility for supporting I/O which preserves referential transparencyand allows a sequential ordering to be de�ned for the execution of I/O actions. This facility is called theI/O Monad.The ability to perform I/O in a purely functional manner does not come for free, and the use of theI/O Monad does tend to complicate the de�nition of a program. The designers of the Haskell languagehave noticed that for many tasks which involve I/O it is easier for the programmer to reason about theexecution of I/O in an imperative manner. From this observation came Haskell's do{notation whichenables the programmer to write code that uses the I/O Monad in a way which resembles the use ofstatements in imperative languages. The use of do{notation so closely follows an imperative style that itleads many people to believe that it is not functional. Bear in mind that do{notation is only syntacticsugar for more complex underlying functional code.We illustrate the two styles of sequencing monadic computations with the following example (from AGentle Introduction to Haskell) which copies the contents of one �le to another.14

Using the raw Monadic operators:import IOmain= getAndOpenFile "Copy From: " ReadMode >>= \fromHandle ->getAndOpenFile "Copy To: " WriteMode >>= \toHandle ->hGetContents fromHandle >>= \contents ->hPutStr toHandle contents >>hClose toHandle >>putStr "Done.\n"getAndOpenFile :: String -> IOMode -> IO HandlegetAndOpenFile prompt mode= putStr prompt >>getLine >>= \name ->-- catch will trap any exceptions caused by opening the file.-- if we get an exception then ask the user to try againopenFile name mode `catch`(_ -> putStr ("Cannot open " ++ name ++ "\n") >>getAndOpenFile prompt mode)Using do notation:import IOmain= dofromHandle <- getAndOpenFile "Copy From: " ReadModetoHandle <- getAndOpenFile "Copy To: " WriteModecontents <- hGetContents fromHandlehPutStr toHandle contentshClose toHandleputStr "Done.\n"getAndOpenFile :: String -> IOMode -> IO HandlegetAndOpenFile prompt mode= doputStr promptname <- getLine-- catch will trap any exceptions caused by opening the file.-- if we get an exception then ask the user to try againopenFile name mode `catch`(_ -> do putStr ("Cannot open " ++ name ++ "\n")getAndOpenFile prompt mode)Note that, due to Haskell's lazy evaluation, the list of characters returned by hGetContents will onlybe read in as required by hPutStr. Thus the whole input �le will not need to be read into memory beforeit is written out. 15

We have provided a sample Haskell program which makes use of the I/O Monad in Appendix C.This program allows the user to interactively explore nodes in a binary tree, and illustrates the use ofdo{notation quite extensively.More information about using the I/O Monad (and monads in general) can be found in A GentleIntroduction to Haskell.9 Monomorphism RestrictionHaskell has a rule that at the top level of a module only function de�nitions can be overloaded. This isto avoid `unintuitive' recomputations of constants.For example the following de�nition of lessThan is overloaded (it can be applied to any argumentswhose type is an instance of Ord):lessThan = (<)ERROR "dmr.hs" (line 7): Unresolved top-level overloading*** Binding : lessThan*** Outstanding context : Ord bThere are two simple solutions to this restriction. Always provide an explicit type signature:lessThan :: Ord a => a -> a -> BoollessThan = (<)Or provide the arguments, so lessThan is now a function de�nition:lessThan x y = (<) x yIdeally, do both.10 SourcesInformation in this document has been taken from:� Report on the Programming Language Haskell, version 1.4, John Peterson and Kevin Hammond(editors).� Standard Libraries for the Programming Language Haskell, version 1.4, John Peterson and KevinHammond (editors).� Di�erences between Miranda and Haskell (Notes), Bernard Pope.� Haskell for Miranda Programmers (Slides), Harald S�ndergaard.11 Further ReadingMost web-based Haskell information can be found by following links from Haskell's home page:http:/www.haskell.org/In particular the following on-line sources are recommended:� Report on the Programming Language Haskell, version 1.4, John Peterson and Kevin Hammond(editors).http://www.cs.mu.oz.au/~bjpop/fpu/haskell-report-1.4-html/index.html16

� Standard Libraries for the Programming Language Haskell, version 1.4, John Peterson and KevinHammond (editors).http://www.cs.mu.oz.au/~bjpop/fpu/haskell-library-1.4-html/index.html� A Gentle Introduction to Haskell, version 1.4, Paul Hudak, John Peterson, Joseph Fasel.http://www.cs.mu.oz.au/~bjpop/fpu/haskell-tutorial-1.4-html/index.htmlThe Haskell 98 language de�nition and library report is often clearer than the 1.4 reports, althoughcare must be taken that the information is still valid in version 1.4:� Haskell 98: A Non-strict, Purely Functional Language, Simon L. Peyton Jones, John Hughes (edi-tors).http:/www.haskell.org/onlinereport/� Standard Libraries for Haskell 98, Simon L. Peyton Jones, John Hughes (editors).http:/www.haskell.org/onlinelibrary/Many papers on aspects of Haskell can be found from http://www.haskell.org/bookshelf/The following books on Haskell are currently available:� Haskell: The Craft of Functional Programming, Simon Thompson, Addison-Wesley, 1996. ISBN0-201-40357-9.� Introduction to Functional Programming using Haskell, 2nd edition, Richard Bird, Prentice HallPress, 1998, ISBN: 0-13-484346-0.

17

A Common Operators and Built-in FunctionsThe following tables give the Haskell equivalents (where they exist) of all the Miranda operators andfunctions de�ned in standard environment.A.1 Miranda operatorsMiranda Haskell Comment= == Class Eq�= /= Class Eq>= >= Class Ord> > Class Ord<= <= Class Ord< < Class Ord+ + Class Num- - Class Num* * Class Num/ / Class Fractionaldiv `div` Class Integralmod `mod` Class Integral^ ^ exponent� not& && conjunctionn= || disjunction: : list cons++ ++ list append# length! !! list indexing-- nn list di�erence (Module List). . function composition

18

A.2 Miranda FunctionsMiranda Haskell Commentabs abs Class Numand andarctan atan Class Floatingcjustify No simple equivalentcode ord module Charconcat concatconverse flipcos cos Class Floatingdecode chr module Chardigit isDigit module Chardrop dropdropwhile dropWhile Note the capital 'W'e exp 1entier floor class RealFracerror errorexp exp class Floatingfilter filterfoldl foldlfoldl1 foldl1foldr foldrfoldr1 foldr1fst fsthd headid idindex No simple equivalentinit initinteger integer x = x == fromIntegral (truncate x)iterate iteratelast lastlay unlineslayn No simple equivalentletter isAlpha module Charlimit No simple equivalentlines linesljustify No simple equivalentlog log class Floatinglog10 log10 n = logBase 10 n class Floatingmap map class Functormap2 zipWith class Functormax maximummax2 maxmember elem Args di�erent ordermerge No simple equivalentmin minimummin2 minmkset nub module List19

Miranda Haskell Commentneg negate class Numnumval reador orpi pi class Floatingpostfix postfix x xs = xs ++ [x]product productrep replicaterepeat repeatreverse reverserjustify No simple equivalentscan scanlshownum showsin sin class Floatingsnd sndsort sort module Listspaces spaces n = repeat n ' 'sqrt sqrt class Floatingsum sumtake taketakewhile takeWhile Note the capital 'W'tl tailundef error ``undefined''until untilzip miranda zip (a,b) = zip a bzip2 zipzip3 zip3

20

B Type Classes by ExampleIn this this section we present the use of Haskell type classes by example. We show how the Haskellsystem can automatically derive some types to be instances of some classes, and we show how types canbe manually made instances of a class. We use the standard type class Enum throughout this discussionbecause it is small enough for a full exposition, yet rich enough to be of practical use.Programmers can de�ne their own type classes, but this is beyond the scope of this tutorial.B.1 The Enum type classThe Enum type class is useful for any type whose members can be enumerated. For example the charactertype (Char) is enumerable and is a member of Enum, however functions (of type a -> b, for example)cannot be enumerated, and therefore cannot be a member of Enum.There are two basic bene�ts of an enumerable type being a member of Enum. Firstly, the class ensuresa consistent manner for mapping integers to members of the type and vice versa. Secondly, the classenables the use of dot dot notation in list generators. For example, [1..] produces the in�nite successivelist of integers starting at the number 1.There are six functions which must be de�ned for a type if it is to be accepted as an instance of Enum.They are:1. toEnum :: Int -> a, maps an integer to a unique member of the enumerable type.2. fromEnum :: a -> Int, maps an element of the enumerable type to a unique integer.3. enumFrom :: a -> [a], enumerates all members of the enumerable type in successive order start-ing at a particular member ([1..]).4. enumFromThen :: a -> a -> [a], enumerates some members of the enumerable type, starting ata particular member and stepping by a particular distance between successive members ([1,3..]).5. enumFromTo :: a -> a -> [a], similar to enumFrom, except the enumeration is bounded by aparticular member ([1..10]).6. enumFromThenTo :: a -> a -> a -> [a], similar to enumFromThen, except the enumeration isbounded by a particular member ([1,3..10]).Note that the last two functions (enumFromTo and enumFromThenTo), are given default de�nitions inEnum as below, and so do not have to be speci�cally provided by the programmer (although, programmersmay provide alternate de�nitions if they so desire):enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]enumFromThenTo x y z = map toEnum [fromEnum x, fromEnum y .. fromEnum z]Therefore, there are actually only four functions that must be introduced to make a type a member ofEnum.B.2 A basic enumerated type, and automatic inferenceIn many cases we may declare a new type whose members are all listed in the de�nition of the type. Inother words, the type forms a �nite countable set of values. For example, we may be interested in a typewhich names the days of the week:data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat21

For such types we can ask the Haskell system to automatically make them an instance of Enum.Essentially, this requires the Haskell system to generate the four necessary functions mentioned above.For the type Day, this is a trivial matter of mapping each member of the type to an integer consecutivelyfrom zero to six.To ask the Haskell system to derive Day to be a member of Enum, we simply write:data Day = Sun | Mon | Tue | Wed | Thu | Fri | Satderiving EnumWe would also like to be able to display members of the type, and so Day must be made an instanceof the Show type class. This too can be derived by Haskell (at least, for types such as Day), and so weextend our de�nition of Day a little further:data Day = Sun | Mon | Tue | Wed | Thu | Fri | Satderiving (Enum, Show)Having made Day an instance of Enum and Show we can do interesting things as in the following:Hugs> fromEnum Wed3Hugs> (toEnum 6)::DaySatHugs> [Sun ..][Sun, Mon, Tue, Wed, Thu, Fri, Sat]Hugs> [Mon, Wed ..][Mon, Wed, Fri]Hugs> [Mon .. Thu][Mon, Tue, Wed, Thu]B.3 A more complex enumerable typeSuppose we would like to model the natural numbers using only the basis value Zero and the successorfunction S. From Zero and S we can recursively enumerate the set of natural numbers. For example thenumber four is represented by the application S (S (S (S Zero))). We can implement this model inHaskell very succinctly using the type Nat, de�ned below:data Nat = S Nat | Zeroderiving ShowAddition and multiplication on this datatype (which re
ect the normal meaning for addition andmultiplication on natural numbers) can be de�ned in the following manner:addNat :: Nat -> Nat -> NataddNat m Zero = maddNat m (S n) = S (addNat m n)multNat :: Nat -> Nat -> NatmultNat _ Zero = ZeromultNat m (S n)= addNat m (multNat m n)For example, we can perform the following operations:22

Hugs> addNat (S Zero) (S (S Zero))S (S (S Zero))Hugs> multNat (S (S (S Zero))) (S (S Zero))S (S (S (S (S (S Zero)))))We know that the members of the Nat type are (recursively) enumerable and so we would like tomake Nat an instance of Enum. We can't ask the Haskell system to automatically derive this instancebecause such derivation only works when all members of the type are listed in the de�nition of the type.Therefore, we have to manually make Nat an instance of Enum by de�ning the four required functionsmentioned above (toEnum, fromEnum, enumFrom, enumFromThen).First we must give an instance declaration, like so:instance Enum Nat wheretoEnum = intToNatfromEnum = natToIntenumFrom = natFromenumFromThen = natFromThenThen we must implement the various required functions.The function toEnum requires a mapping from the integers to members of the new type. We implementit in the function intToNat below. It is obvious that 0 maps to Zero and all positive integers map toa corresponding sequence of S applications. Since the natural numbers do not cover negative values, wemap negative integers to the natural number that corresponds to the absolute value of the integer. Analternative option would have been to return an error if a negative integer was supplied as an argument,but that complicates the discussion somewhat.intToNat :: Int -> NatintToNat n| n > 0 = S (intToNat (n - 1))| n == 0 = Zero| otherwise = intToNat (-n)The function fromEnum has a fairly obvious task: map each member of the enumerated type to aunique integer. We de�ne this mapping using the function natToInt below:natToInt :: Nat -> IntnatToInt Zero = 0natToInt (S n) = 1 + (natToInt n)The function enumFrom is implemented by a call to natFrom. Note that we do addition directly uponvalues of type Nat (using addNat), rather than converting them to integers �rst and then performingthe addition. We do so for e�ciency reasons. Due to the way addNat is de�ned the cost of adding twonatural numbers is proportional to the magnitude of the second value in the addition. However, if wewere to convert both natural numbers to integers �rst and then add them, the cost would be proportionalto twice the sum of the magnitudes of both numbers (due to the cost of converting them to integers andto the cost of converting the result back to a natural number). If we are sure that the second number inthe addition is a small natural number (i.e. S Zero in this case) the cost of the addition is negligible.natFrom :: Nat -> [Nat]natFrom n= n : (natFrom (addNat n (S Zero)))23

The last required function, enumFromThen, is implemented by a call to natFromThen. There arethree general cases to consider when generating an enumeration with a step value. Each case is handledseparately by a guard in the de�nition of natFromThen. The �rst case occurs when the �rst value of theenumeration and the next value are the same. In such a case we simply generate an in�nite list of the�rst value. The second case occurs when the second value is less than the �rst. It is possible to generatea �nite list of naturals of decreasing magnitude, but an in�nite list is not possible because the naturalsdo not cover negative values. To simplify the discussion we ban decreasing enumerations and report anerror if an attempt is made to generate such a list. The third case occurs when the second value is strictlygreater in magnitude than the �rst value, in such a case we call the function natFromThen' to generatethe list.natFromThen :: Nat -> Nat -> [Nat]natFromThen first second| fromEnum first == fromEnum second= infiniteFirsts| fromEnum second < fromEnum first= error "the second value is less than the first"| otherwise = natFromThen' first stepSizewhereinfiniteFirsts = first : infiniteFirstsstepSize = toEnum ((fromEnum second) - (fromEnum first))natFromThen' :: Nat -> Nat -> [Nat]natFromThen' next step= next : (natFromThen' (addNat next step) step)After all the hard work, we can �nally make use of the fact that Nat is now an instance of Enum:Hugs> map fromEnum (take 10 [Zero ..])[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]Hugs> putStr (unlines (map show [intToNat 4, intToNat 8 .. intToNat 16]))S (S (S (S Zero)))S (S (S (S (S (S (S (S Zero)))))))S (S (S (S (S (S (S (S (S (S (S (S Zero)))))))))))S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S Zero)))))))))))))))

24

C Monadic IO Example{---Author: Bernard PopeDate: 22/1/98Notes: Fun with Haskell Monadic IO. Contains code forbuilding a balanced BST from a list, and code forinteractively exploring a Binary Search Tree.The nodes in the tree must be an instance of theShow class.Usage: For example:exploreTree (bTree [1..10])l/L for navigating left, r/R for navigating right.u/U for going back up one level in the tree.q/Q for quiting the navigation.Any other key will be ignored and the choice ofdirection will be asked for again.---}module ExploreTree (bTree, Tree, exploreTree) where{- Standard Binary Tree-}data Tree a = Node (Tree a) a (Tree a) | NilTreederiving (Show){- function: bTree, bTree'description: builds a balanced binary tree from a list of elements.-}bTree :: [a] -> Tree abTree list= bTree' list (length list)bTree' :: [a] -> Int -> Tree a 25

bTree' [] _ = NilTreebTree' list@(x:xs) listLength= (Node (bTree' left leftLength) mid (bTree' right rightLength))where(left, mid:right) = splitAt leftLength listleftLength = listLength `div` 2rightLength = listLength - (leftLength + 1){- enumerated type for the user's desired action.-}data Direction = GoLeft | GoRight | GoUp | Quit{- function: exploreTreedescription: interactively traverse a binary tree using the IOmonad.Calls the function exploreTree' which remembers theancestor nodes of the current node in the tree sothat it can traverse upwards.-}exploreTree :: Show a => Tree a -> IO ()exploreTree t= exploreTree' [] t{- function: exploreTree'description: Takes a list of ancestor nodes (as a stack)and the current node.Prints the current node then prompts the user forthe next direction to explore (or quit).-}exploreTree' :: Show a => [Tree a] -> Tree a -> IO ()-- hit a leaf node (Nil). Can only quit or go back up the tree.exploreTree' parents NilTree 26

= doputStr "NilTree\n"r <- responsecase r ofGoUp -> upTree parents NilTreeQuit -> return ()_ -> doputStr "Can only go up\n"exploreTree' parents NilTree-- an internal node. Can go left/right, up or quit.exploreTree' parents t@(Node left node right)= doputStr (show node)putStr "\n"r <- responsecase r ofGoLeft -> exploreTree' (t:parents) leftGoRight -> exploreTree' (t:parents) rightGoUp -> upTree parents tQuit -> return (){- function: upTreedescription: Takes a list of ancestors (as a stack) and thecurrent node.Traverses up the tree one level (if possible).-}upTree :: Show a => [Tree a] -> Tree a -> IO ()-- no ancestors, we must be at the top of the tree, re-call-- exploreTree' with the current node.upTree [] node= doputStr "Can't go up any further\n"exploreTree' [] node-- at least one ancestor, call exploreTree with the parent and its-- ancestors.upTree (a:as) node= exploreTree' as a{- function: response 27

description: get the response from the user as to which directionthey would like to explore.-}response :: IO Directionresponse= doputStr "(L)eft, (R)ight, (U)p or (Q)uit?\n"c <- getLinecase c of"l" -> return GoLeft"L" -> return GoLeft"r" -> return GoRight"R" -> return GoRight"q" -> return Quit"Q" -> return Quit"u" -> return GoUp"U" -> return GoUp_ -> response -- unknown command, call response again

28

