
BuddhaA Declarative Debugger for HaskellBernard Popesupervisor: Lee NaishHonours ThesisJune 1998
Department of Computer ScienceThe University of MelbourneParkville Vic. 3052Australia

AbstractDue to their reliance on the execution order of programs, traditional debugging techniques are notwell suited to locating the source of logical errors in programs written in lazy functional languages.We describe the implementation of a declarative debugger for the programming language Haskell,which assists the location of logical errors based on the declarative semantics of program de�nitions.The implementation is based on the Hugs interpreter, and both solidi�es previous work in the �eldand extends it to incorporate features typical of many modern lazy functional languages.

Contents1 Introduction 12 Haskell 22.1 Background : 22.2 Haskell is a lazy language : 22.3 Haskell is a higher{order language : 42.4 Haskell is purely functional : 42.5 Haskell has a strong static type system : 42.6 The syntactic subset of Haskell that is currently supported by the debugger : : : : : : : : 52.7 Hugs : 53 Declarative Debugging 53.1 The evaluation dependence tree : 63.2 Program transformation : 73.3 A two level debugging architecture : 73.4 Limitations and requirements of the debugger : 94 The implementation of Buddha 114.1 The source to source transformation of programs : 114.1.1 Implementation of the EDT : 114.1.2 The transformation algorithm of Naish and Barbour : : : : : : : : : : : : : : : : : 124.1.3 Transformation of where clauses : 144.1.4 Transformation of guarded equations : 184.1.5 Transformation of curried function de�nitions : 204.1.6 Transformation of higher{order arguments : 214.2 The impure function dirt : 244.3 Traversal of the EDT in search of topmost buggy nodes : : : : : : : : : : : : : : : : : : : 285 Related work 305.1 Naish and Barbour : 315.2 Nilsson and Sparud : 315.3 Kishon and Hudak : 326 Contribution 327 Further work 337.1 Supporting the full Haskell syntax : 337.2 Improving the memory consumption of Buddha : 337.3 Monadic style programs and I/O : 347.4 Using type analysis in the transformation of programs : 347.5 Improving the interaction with the oracle, and alternative uses of the EDT : : : : : : : : 348 Conclusion 35A Example transformed guarded equation 38B Transformation and debugging session for a buggy version of take 39
i

1 IntroductionThe theoretical and practical advantages of pure lazy functional programming languages are many [5].As a instance of the declarative programming paradigm, such languages allow the programmer to focuson the formal de�nition of the task to be solved, leaving the issue of evaluation strategy to the languageimplementation. This is a powerful abstraction which permits one to reason about the correctness of aprogram without the need to consider the underlying computational machinery.One particular advantage of functional languages is that many run{time errors, or bugs, that arepossible in other programming paradigms, are avoided. Referential transparency, implicit memory man-agement and strong typing are three features typical of modern functional languages that prevent a largeclass of bugs from ever occurring. Unfortunately, no programming paradigm is completely immune frombugs. There are three main sources for bugs in functional languages [20]: program exceptions, such asattempting to divide by zero; logical errors, which occur when the actual meaning of the program andthe intended meaning of the program are not the same; and exhaustion of memory resources. It hasbeen argued that if functional languages are to be widely accepted in the programming community, thene�ective mechanisms for debugging programs written in them must be developed [19].Step{wise tracing of program execution is the basis for most current debugging techniques. Suchdebugging techniques are well suited to the imperative paradigm because the execution order of programswritten in imperative languages is explicit in the syntactic structure of the program and also in theuser's understanding of how the program works. It is therefore apparent that traditional debuggingtechniques are not suited to declarative languages, because execution order is not truly re
ected intheir syntactic structure or their declarative semantics. This observation is particularly true for lazylanguages. Expressions in lazy languages are evaluated on demand. This means that an expression willonly be evaluated if it is needed in the production of the �nal result of the program. In general, it is noteasy to reconcile the execution order of a program written in a lazy language with the text of the program.Thus debugging strategies based on execution order are of little practical use for lazy languages.The di�culty of debugging functional languages is well recognised, and several approaches have beensuggested to solve this problem. One promising approach is declarative debugging in which the sourcesof bugs are located according to the declarative semantics (or intended meaning) of the program ratherthan execution order of the program. This technique has its origins in algorithmic debugging, which wasinitially used to debug wrong and missing answers in relational programming languages [18]. The maindisadvantages of previous declarative debugging schemes for functional languages are that they prohibitportability and su�er from ine�cient memory usage.In this paper we present Buddha1, a declarative debugger for the pure lazy functional languageHaskell. The debugger is based on previous work by Naish and Barbour, who propose a declarativedebugging technique that maximises portability and which is constrained in its memory usage. Weextend the technique to incorporate additional language features, typical of modern functional languages,and provide an implementation of a low level primitive function which is critical to the success of thetechnique.The paper is structured as follows. In the second section we give a brief overview of the Haskellprogramming language. We discuss the important features of Haskell that in
uence the design of thedebugger, and brie
y provide an argument for implementing the debugger using Hugs, an interactiveHaskell interpreter. We also discuss the subset of Haskell that is currently supported by the debugger.In the third section we provide an overview of the declarative debugging technique. We state the formalrequirements of the technique, and describe how it can be used for functional languages. We also formaliseour own declarative debugging architecture. In the fourth section we describe our implementation of thedeclarative debugging technique proposed by Naish and Barbour. Several extensions to the technique arediscussed, which allow it to incorporate additional (but typical) language features. In the �fth section wesurvey related work in the �eld and compare it to the work described in this paper. In the sixth section1Bernie's Ultimate Declarative Debugger for Haskell. 1

we describe our contribution to the �eld of debugging pure lazy functional languages. In the seventhsection we discuss possible extensions to the current debugger both to increase the class of languagefeatures that it supports and to decrease its memory usage.2 HaskellIn this section we provide a brief overview of the Haskell programming language. We mention thebackground of the language and discuss the principal features of pure lazy functional languages (the classof languages to which Haskell belongs). We discuss the subset of Haskell that is currently supported bythe debugger and provide an argument for the implementation of the debugger in Hugs, an interpretedHaskell system. For a more complete description of Haskell, the reader is directed to the Haskell 1.4Language Report [16], and the Haskell tutorial A Gentle Introduction to Haskell [4].2.1 BackgroundIn 1987 the Haskell programming language was speci�ed by a design committee. The motivation for itsinception was to satisfy the need for a standard pure lazy functional language suitable for application ingeneral programming tasks. Haskell incorporates many modern programming language features, and isviewed as \the culmination and solidi�cation of many years of research on lazy functional languages" [16].Some of the most important features of Haskell are: referential transparency, lazy evaluation, higher{order, strong static polymorphic typing, extensive primitive data{types and monadic I/O. The mostrecent version of the language is de�ned in the Haskell 1.4 Language Report [16]. There are severalimplementations available, some incorporating signi�cant extensions to the language de�nition.2.2 Haskell is a lazy languageIt is possible to classify functional languages according to the order in which the arguments to functionsare evaluated. A binary classi�cation exists in which the order of evaluation is described as either strictor non{strict.2 Arguments to a function in a strict language are evaluated before the function is called,whereas the evaluation of arguments to a function in a non{strict language is delayed until the value ofthose arguments is actually needed. Non{strict evaluation is often called lazy evaluation, and languagessuch as Haskell that use this evaluation order are called lazy languages.3 The arguments to functionsin a strict language are always evaluated, whilst arguments to functions in lazy languages may never beevaluated (if their value was not needed) or partially evaluated (if only part of their value was needed).The distinction between evaluation orders has important implications for the termination propertiesof each type of language. Consider the function main in �gure 1.4 In a lazy language, the evaluation ofthe function main proceeds in the following manner. The function fst, which returns the �rst elementof a tuple, is applied to the expression foo 1 2. Since foo 1 2 is evaluated lazily it simply returns theexpression (fie (1 + 2), inf 2), from which fst will select the expression fie (1 + 2). The resultof applying fie to (1 + 2) is the expression 2 * (1 + 2). The last step in the evaluation causes + tobe invoked, then *, which �nally returns the value 6. An execution tree depicting the lazy evaluation ofmain is given in �gure 2. The function inf when applied to a numeric argument will cause an in�nitecomputation. Note, however, that the lazy evaluation of foo 1 2 does not cause inf 2 to be evaluated,and hence the overall computation is terminating. In a strict language this is not the case as foo willcompletely evaluate its arguments, thus triggering the non{termination of inf 2.2It is possible to combine a mixture of both evaluation orders, as is done in many modern functional languages. Howeversuch combinations are limited to special cases, which for simplicity, we will not cover.3Haskell has lazy data constructors which, amongst other things, allow the creation and manipulation of potentiallyin�nite data structures. We limit our discussion of laziness to functions for simplicity, however, data constructors can bethought of as a special type of function that map types to types.4This is a slight adaptation of an example given by Sparud [19] to describe lazy evaluation.2

inf :: Num a => a -> ainf x = x + (inf x)foo :: Num a => a -> a -> (a, a)foo x y = (fie (x + y), inf y)fie :: Num a => a -> afie x = 2 * xmain :: Intmain = fst (foo 1 2)Figure 1: An example program which terminates under lazy evaluation, but not under strict evaluation
main = 6

foo (1 2) = (fie (1 + 2), inf 2)

fst (foo 1 2) = fie (1 + 2) fie (1 + 2) = 6

1 + 2 = 3 2 * 3 = 6Figure 2: Lazy execution tree for the program de�ned in �gure 1Nilsson and Sparud [15] make two important observations about the lazy evaluation of functionalprograms. Firstly, the actual arguments to functions and results of functions during the evaluation of aprogram are expressions which may or may not be evaluated at a later stage in the computation. In theexample above, we expect the argument to fie to be a number, but in actuality it is the unevaluatedexpression 1 + 2. Secondly, the order of the execution is not obviously re
ected in the structure ofthe program text. In the example above the call to fie (1 + 2) is performed outside the evaluation offoo 1 2, although the program text appears to suggest otherwise. These two observations have importantimplications for debugging lazy languages. In the �rst case, arguments to a function may not be in theirmost evaluated form upon the invocation of that function, and furthermore, the arguments of a functionmay only be partially evaluated over the complete execution of the program. If we wish to ask the userof the debugger whether a function application produced the correct result, we must be able to displaya representation of the arguments (and result) of the application in a form which re
ects the extent towhich they were evaluated at the end of the execution of the program. We must also be prepared toencounter potentially in�nite arguments, that were only partially evaluated during the execution of theprogram. In the second case, if the debugger were to follow the actual execution of the program, it maybe di�cult if not impossible for the user of the debugger to reconcile the progress of the evaluation withthe de�nition of the program. The design of our debugging system, described section 4, is motivated toa large extent by these two observations.
3

2.3 Haskell is a higher{order languageFunctions are �rst class citizens in higher{order functional languages. This means that functions canbe treated like any other non{functional object. In e�ect, functions can be passed as arguments toother functions, they can be returned as the result of functions, and they can occur inside arbitrarydata structures. When a function of arity n is applied to m arguments (where n 2 Nnf0g and m 2 N),such that m < n, we say that the function is partially applied or curried. Currying can be thought ofas a special instance of higher{order programming, because the result of a curried application is a newfunction of n�m arguments.Although functions are regarded as �rst class citizens in functional languages, they di�er from thebasic types in a number of important ways. For instance, there is no absolute way to de�ne equality overfunctions in the same way that equality can be de�ned for many non{functional types. Furthermore, asabstract objects, functions do not have inherent printable representations. In order for the debugger toask questions about the correctness of a function application it must provide a printable representation ofthe arguments to the function and its corresponding result. As we will demonstrate in section 4.1.6, thiscan be di�cult when the arguments or result are functional or contain functions within data structures.2.4 Haskell is purely functionalThere is some disagreement in the functional programming community as to what is required of a languagefor it to be regarded purely functional. A stringent de�nition of purity requires that all computationswithin the language are performed by function application alone, and side{e�ects resulting from functionapplications are not allowed. A side{e�ect (sometimes called a computational e�ect) is the performanceof an operation external to the evaluation of a function that causes a change in the program's state, forexample, incrementing a global variable or writing data to a �le. Haskell cannot be regarded pure inrespect to this de�nition due to its allowance of side{e�ects via various monadic constructs. A broaderde�nition of purity that is often used, allows function application to cause side{e�ects providing thatreferential transparency is preserved. A language is considered referentially transparent if the value of anyexpression depends only upon the values of its well formed sub{expressions. In other words, functions ina referentially transparent language always return the same result given particular arguments no matterwhen or where they are called in the execution of the program. A further de�nition of purity is dueto Sabry [17], who proposes that a functional language is pure if the value of functions is the sameirrespective of the parameter passing mechanism employed by the language. Haskell can be consideredpurely functional in respect to the second and third de�nitions of purity outline above.For the purposes of this paper, the second of the above de�nitions of purity will su�ce. The purityof a language is of great signi�cance for declarative debugging. Within the debugger, the search for thesource of a bug is directed by the perceived correctness of functions when applied to certain arguments.The correctness must be judged solely on the value of the arguments to the function and its correspondingresult when applied to those arguments. Since the values of functions in an impure language may notrely entirely on the values of their arguments, the determination of the correctness of such functions maybecome arbitrarily complicated. In other words, the declarative debugging strategy relies on the purityof functions to successfully guide the search for the source of bugs.2.5 Haskell has a strong static type systemIt is a common (although not essential) feature of modern functional languages to have strong static typesystems. This means that every value in the language has a type, and all errors due to type mismatchcan be detected statically. In e�ect, this ensures that type errors are impossible during the executionof a program written in such a language. It is not our intent to provide a complete description of thetype systems used in modern functional languages, however, the type system of Haskell does imposesome constraints on the design of the debugger if it is to be written in Haskell itself. These constraints4

will become apparent when we provide a detailed description of our implemented debugger. For a morethorough account of the type system of Haskell, the reader is directed to Section 4.1.3 of the Haskell 1.4Language Report [16].2.6 The syntactic subset of Haskell that is currently supported by the de-buggerHaskell is a syntactically rich language. It allows considerable
exibility in the style of programmingadopted by the programmer. Due to time constraints on the completion of the project, some aspects ofits syntax are not yet supported by the debugger. It was considered su�cient to support the subset ofHaskell syntax that closely resembles that of the Miranda programming language. The main syntacticconstructs that are not currently supported are: lambda expressions, let expressions, case expressions,and list comprehensions. Such syntactic constructs do not increase the computational power of Haskellover the supported syntax, however, they do increase its
exibility, and are intended to be supported infuture versions of Buddha.2.7 HugsHugs5 is an interpreted implementation of Haskell which provides an interactive development environ-ment. It is based signi�cantly on the Gofer interpreter of Mark Jones. There are a number of reasonsthat Hugs was chosen as a suitable environment in which to develop Buddha. Firstly, the standardHugs distribution provides useful low{level primitives upon which a key feature of the debugger can beimplemented without the need for any modi�cations to the system. Secondly, Hugs is a small system incomparison to the available compilers for Haskell, making it more suitable for experimentation. Finally,as an interactive environment, users can incrementally debug a program during its development withoutthe need for repetitive re{compilation. Having said this, a signi�cant goal of the Naish and Barbourdebugging technique is that it be portable to other programming languages and environments. The de-bugger described in this paper is an instance of of their technique, however, there is no special relianceon Hugs or Haskell for the success of the technique.3 Declarative DebuggingThe idea of using the declarative semantics to guide a semi{automated search for the source of bugsin programs is due to Shapiro [18]. The original work focussed on locating logical errors in Prologprograms, however the principles behind the method can be extended to other programming languagesand paradigms.6 Much of the original work in the �eld was performed under the title of algorithmicdebugging, however, we adopt the term declarative debugging to emphasise the importance of declarativesemantics in the technique.In this section we discuss the principles of declarative debugging when applied to lazy functionalprogramming languages. The intention is to provide the reader with an intuitive understanding of thedeclarative debugging machinery before our particular implementation is described in section 4. Inparticular, we provide a high{level description of the main data structure upon which the technique isbased, and compare it with the lazy execution tree introduced in section 2.2. We give an overview of twomethods commonly used to construct the data structure, and discuss the method adopted in Buddha. Wedescribe the two level architecture of the debugger, and provide an example application of the debuggerto a buggy insertion sort program, viewing the execution of the debugger from the user's perspective.5The Haskell User's Gofer System.6Westman and Fritzson [22] report that algorithmic debugging has been applied to imperative languages and parallellogic languages. 5

Finally we discuss some of the limitations of the declarative debugging technique, and the requirementsimposed upon its design to ensure correct behaviour.3.1 The evaluation dependence treeIn section 2.2 we illustrated the di�culty of reconciling the evaluation order of programs written in lazyfunctional languages with the text of those programs. The goal of declarative debugging is to allow aprogrammer to reason about the correctness of the execution of a program in a manner which closelyre
ects its textual de�nition. We de�ne an evaluation dependence tree (EDT) to represent an instance ofthe evaluation of a program.7 The key feature of the EDT is that it re
ects the syntactic dependenciesof the program de�nition, rather than the execution dependencies due to lazy evaluation. Each node inan EDT represents a function application that occurred during the execution of a program. In additionto a representation of the value of the application, at each node we record the name of the function thatwas applied, and a representation of the arguments that it was applied to. For a node representing anapplication of function f , its children correspond to the syntactic applications in the de�nition of f thatwere actually evaluated. Consider the example program in �gure 1. We can see that the de�nition ofthe function foo depends syntactically on the calls fie (x + y) and inf y. The application of foo toits arguments represents a two element tuple, however, during the execution of the program (due to theevaluation of main) only the �rst element of the tuple is needed, thus inf 2 is not evaluated. We cansee that the existence of a syntactic dependency between a function de�nition and a function call doesnot necessarily lead to an evaluation dependency between the two: the evaluation of foo 1 2 did notdepend on the evaluation of inf 2 in this instance. An EDT for the evaluation of main from �gure 1 isgiven in �gure 3.
foo 1 2 = (6, _) fst (6, _) = 6

fie 3 = 6

2 * 3 = 6

1 + 2 = 3

main = 6

Figure 3: EDT of the example program in �gure 1A comparison of the two trees in �gure 2 and �gure 3 is useful. The nodes in the lazy executiontree are ordered according to the time at which they were evaluated, whereas the nodes in the EDT areordered according to their syntactic position in the program de�nition. Note that each tree is a truere
ection of this instance of the execution of the program. In particular, neither tree contains a nodefor the application inf 2, even though the application of inf to an argument occurs in the de�nition offoo. Note also the presence of underscores in the second element of the tuple returned by foo 1 2 in the7The term evaluation dependence tree is borrowed from Nilsson and Sparud [15], however, the structure of our tree isdi�erent from theirs. The di�erences between our tree and that of Nilsson and Sparud are presented in section 4.1.1 andsection 4.1.2. 6

EDT. The underscores indicate that this part of the tuple was not evaluated at the end of the program,and hence not involved in producing the value of main. Each tree represents an understanding of theevaluation of the program, however the �rst is operational and the second is declarative.3.2 Program transformationSeveral declarative debugging techniques for lazy functional languages have been based on the creationand traversal of an EDT [14, 11, 15, 3]. In general there have been two approaches taken to constructingthe EDT. The �rst approach, as exempli�ed in the work of Nilsson et al [12, 21, 13]8, requires a modi�edlanguage implementation that generates the EDT as a side{e�ect of executing the program. As theproponents of this technique note, a signi�cant e�ort is required to implement the necessary languagemodi�cations. Such a technique allows for several optimisations to be made in the generation of the EDT,however it is not very portable between di�erent language implementations. The second approach usesa source to source transformation on the program text. The de�nition of each function in a program istransformed to return a tuple containing the original result of the function and a EDT node representingthe application of that function during execution. The transformed program is then executed, the resultof which is a tuple containing the value of the original program and a tree representing the EDT forthat execution. This approach has been independently speci�ed by Nilsson and Sparud [15] and Naishand Barbour [11], however there are signi�cant di�erences in the EDTs that they de�ne. We adopt theproposal of Naish and Barbour, and in section 4.1 we discuss the transformation of programs in detail.3.3 A two level debugging architectureDebugging systems based on the program transformation approach are typically constructed in two levels.The �rst level consists of the source to source transformation of the original program. The second levelexecutes the transformed program and traverses the generated EDT, usually interactively, to locate thesource of bugs. Nilsson and Sparud [21]9 refer to the two levels as the EDT generator and the EDTnavigator, and o�er three reasons for the suitability of such a classi�cation. The underlying argument fordesigning the debugger in two levels is that the issues in the generation of the EDT and the eventual useof the tree are logically distinct, thus justifying a separation of the concerns into two parts. We describethe �rst level of the debugger in section 4.1 and section 4.2, and the second level of the debugger insection 4.3.There may be many ways to search for bugs by traversing the EDT, and indeed many other uses of theEDT other than for �nding bugs. We describe one particular traversal of the EDT which is very simple,yet suitable for locating logical errors in a large class of programs. The technique requires an oracle thatknows the intended value of every application performed in the execution of the debugged program. Forsimplicity we assume the oracle to be the person who wrote the program, although other oracles arepossible, such as executable speci�cations of the program. The traversal begins at the top of the EDTwhich contains the topmost function application of the program. The function name, representations ofthe actual arguments, and a representation of the value of the application at the node are presented tothe oracle, upon which the oracle must answer yes if the application was correct or no otherwise. Nodeswhich are determined to be incorrect by the oracle are called erroneous nodes. If the topmost application(i.e. the function application represented by the top node in the EDT) is correct then the debuggerconcludes that it cannot �nd any bugs in this execution of the program. However, if the application isincorrect, the debugger traverses the children of the node from left to right. If the application performedat a particular child is correct, the debugger moves to the next child of the node. Children of correctnodes are not further investigated because their correctness illustrates that they and their descendants8The authors of these papers discuss both EDT generation techniques.9Nilsson and Sparud use this classi�cation for both EDT construction techniques, where we simply refer to the trans-formation technique. 7

did not contribute to the logical error of the program. If the child of the node is incorrect the debuggerrecursively investigates the sub{tree de�ned by the erroneous child. The traversal of the EDT ends whenan erroneous node is located, whose predecessors are all erroneous, and which either has no descendantsor all of its descendants are deemed correct by the oracle. We call such a node a topmost buggy node.In the general case there may be many such topmost buggy nodes10 in the EDT, however in this casewe return the �rst that is encountered. The textual de�nition of the function applied at the topmostbuggy node is displayed at the end of the debugging session to assist the location of the error in theprogram text. There may be many logical errors in a given program de�nition. The debugging techniquedescribed previously requires each logical error to be located and corrected separately before the next.It is possible that multiple sources of errors may be located during the one debugging session through afairly simple extension to the technique just described. We cover alternate EDT navigations and uses insection 7.5.insort :: Ord a => [a] -> [a]insort [] = []insort (x:xs) = insert x (insort xs)insert :: Ord a => a -> [a] -> [a]insert x [] = [x]insert x (y:ys)| y > x = y : (insert x ys)| x < y = x:y:ys| otherwise = y:ys Figure 4: Buggy de�nition of insertion sortConsider the (buggy) de�nition of insertion sort in �gure 411. The bug is due to an error in the �rstguard of the second equation de�ning the insert function. The intended meaning of the program isthat given an unsorted list of objects satisfying the type constraints of the function, it will evaluate toa list containing those objects in ascending sorted order. The actual meaning of the program as it iscurrently de�ned is something di�erent and therefore logically incorrect. For the actual meaning of theprogram to be equivalent to the intended meaning, the erroneous guard in insert could be changed to\| x >= y = y : (insert x ys)" (and the third guard should be removed).An EDT for the evaluation of insort [2,1,3] is given in �gure 5. Erroneous nodes are highlightedby a dark rectangle. Of the erroneous nodes, two topmost buggy nodes are identi�ed by underlines withinthe node.An example debugging session applied to the EDT generated by insort [2,1,3] is given in �gure 6.The responses of the oracle are either `y' (for yes) to specify the application was correct or `n' (for no)to specify the application was incorrect. Notice that the questions asked by the debugger correspond toa partial depth{�rst traversal of the EDT, such that the children of correct nodes are not visited. Thetraversal terminates upon the location of the �rst topmost buggy node. When the node containing theapplication insert 1 [3] = [3, 1] is encountered, it is deemed to be incorrect by the oracle, and sothe debugger recursively moves to the child of that node. The child is correct, and since the node isincorrect but only has correct children it is returned as a topmost buggy node. The de�nition of thefunction applied at the node is then presented at the end of the session.10Note, however, that many topmost buggy nodes may correspond to the same function de�nition in the program text.11We take this example from Hannan [3], however, it is possible that it was derived from earlier works such as Westmanand Fritzson [22]. 8

insort [2,1,3] = [3,1]

insort [1,3] = [3,1]

insort [3] = [3]

insort [] = [] insert 3 [] = [3] insert 1 [] = [1]

insert 1 [3] = [3,1]

insert 2 [3,1] = [3,1]

insert 2 [1] = [1]

Figure 5: Evaluation dependence tree of insort [2,1,3] with a bugbuddha (insort [2,1,3])final result = [3, 1]insort [2, 1, 3] = [3, 1]Correct - Y/N/Q? ninsort [1, 3] = [3, 1]Correct - Y/N/Q? ninsort [3] = [3]Correct - Y/N/Q? y
insert 1 [3] = [3, 1]Correct - Y/N/Q? ninsert 1 [] = [1]Correct - Y/N/Q? yThe erroneous equation is:insert x (y:ys)| y > x = y : (insert x ys)| x < y = x : y : ys| otherwise = y : ysFigure 6: Example interaction with the debugger3.4 Limitations and requirements of the debuggerLogical errors in a program de�nition are not always manifest in the output of an execution of thatprogram. For example, when applied to the empty list or lists of length one, the insort function evaluatesto the correct sorted list. It is only when lists of length greater than one are supplied as arguments thatthe incorrectness of the program will be apparent in its output. For the declarative debugging technique(as described above) to be of any use in locating bugs in a program, the user must �rst identify exampleinputs upon which the program returns incorrect results. This limitation makes it clear that the role ofa declarative debugger (or any debugger for that matter) is not to prove the correctness of a programde�nition, but rather to locate the source of errors in instances of the program execution that generateincorrect results.In the declarative debugging scheme described above we take an original program de�nition andtransform it into a new program de�nition which models the evaluation behaviour of the original program.The success of the debugging technique depends upon the ability of the transformed program to correctlypreserve the behaviour of the original program. It is important to note that the original function and itstransformed counterpart do not have the same declarative meaning. Furthermore, where higher{orderfunctions are concerned, the domain of the original function is not the same as that of the transformedfunction: when functions are passed as arguments in the original program, transformed versions of thosefunctions must be passed in the transformed version of the program.The relationship between a function de�nition, its potential arguments and its result when applied,9

f’ args’

f args

evaluate

evaluate

(value’, tree)

value

t2

transform definition

transform result

transform argumentst1 t3

t1 =

t2 =

t3 =

Figure 7: Commuting diagram, illustrating the mapping between functions and their transformed coun-terpartsand their transformed counterparts is illustrated by the commuting diagram in �gure 7. The relationshipis de�ned by three operators (t1, t2 and t3). We can think of the operation performed by t1 as thesyntactic transformation performed on function de�nitions, or we can think of it in another sense as amapping of abstract functions. Indeed, it is common for the distinction between functions (which areabstract entities) and their de�nitions (which are syntactic entities) to be blurred. In section 4.1 wedescribe the transformation of de�nitions, and thus refer to t1 in the syntactic sense, however, for thepresent discussion it is preferable to think of it as a mapping of functions as abstract entities. Thesecond, t2, maps the arguments of the original function into arguments of the transformed function.For arguments which are not higher{order the transformation is the identity function. If the argumentsare higher{order, then the transformation is more complicated. We discuss a transformation for curriedfunction applications as arguments and the requirements for a more general transformation of higher{order arguments in section 4.1.6. The third, t3, maps the value of an application of the transformedfunction to the value of an application of the original function.Earlier, in this section, we said that for the declarative debugging technique to be successful, thetransformed version of a program must preserve the behaviour of the original program. By this we meanthat, given the operators t1 and t2, we require the existence of the transformation operator t3 such thatthe value of (t3 (f' args')) is equal to the value of (f args), and (f args) is terminating if (and onlyif) (t3 (f' args')) is terminating. In the current version of the debugger we do not allow higher{orderresults, and hence t3 is equivalent to fst.For the debugger to be a useful tool we must ensure that the results it returns are correct. Thepreservation of the original program behaviour in the transformed version of a program is a necessary(but insu�cient) property to ensure the correctness of the debugging technique. What does it mean forthe results of the debugger to be correct? If the topmost application in the EDT is erroneous, severallogical errors in the program de�nition may contribute to that error. The error in the topmost applicationis a symptom of one or more logical errors in the program de�nition. Therefore, we cannot make a directcausal connection between a topmost buggy node and the error in the topmost application of the program,since there may be several factors contributing to the error. However, we would like to be certain thatthe node returned by the debugger is actually incorrect in the intended interpretation of the program.We de�ne the correctness of the debugger to consist of two properties: soundness and completeness.In the trivial case that the topmost application of the program is correct, the debugger is sound andcomplete if it does not return any nodes from the EDT. The more important case occurs when thetopmost application is incorrect. The debugger is sound if it returns an EDT node such that the righthand side of the equation corresponding to the node evaluated correctly in the intended interpretationbut did not equal the intended value of the left hand side of the equation. If the debugger is guaranteedto always �nd a topmost buggy node with the desired soundness property, then it is considered complete.We have described the relationship between the evaluation of a program and its corresponding EDTabove. Providing that the tree is �nite and that the top node in the tree is erroneous, there must be at10

least one topmost buggy node in the tree. Given that the debugger traverses the tree beginning at the topnode, following the erroneous nodes in a depth{�rst order, we can argue (informally) that it is guaranteedto �nd a topmost buggy node. Furthermore, by its very de�nition, a topmost buggy node corresponds toa function equation whose right hand side evaluated correctly but did not equal the intended value of itsleft hand side. Here we rely on an intuitive argument for the correctness of the debugging technique. Wedo not provide a formal proof of the soundness and completeness of the Naish and Barbour declarativedebugging technique in this paper. For a more thorough exposition of correctness, the reader is referredto A Declarative Debugging Scheme [9]. In [9], Naish illustrates that for debugging wrong answers inProlog programs, the EDT is an instance of the proof tree for the program being debugged, which iswell established in the theory of logic programming, The formal proof of soundness and completenessrequires a formalisation of the relationship (outlined in section 3.1) between the EDT and the evaluationof programs in the language in question. For Prolog, this is covered thoroughly in [7, 8] (cited in [9]),from which a similar method of proof can be derived for lazy functional languages.4 The implementation of Buddha4.1 The source to source transformation of programsThe �rst phase of debugging programs with Buddha involves a transformation on the source text of theprogram. In this section we describe how the transformation is implemented in Buddha. We begin bypresenting a Haskell de�nition of an EDT node. We then outline the Naish and Barbour transformationalgorithm which forms the basis for the complete transformation. Following the presentation of thealgorithm, we brie
y discuss the transformation of Nilsson and Sparud. We then illustrate how thetransformation can be extended to incorporate where clauses and guarded equations. At the end ofthis section we discuss the implications that higher{order programming has on the transformation. Inparticular we show how curried function de�nitions and applications can be handled in the transformation.We then provide a description of what is needed for higher{order arguments to be handled in a moregeneral manner.4.1.1 Implementation of the EDTIn section 3.1 a high{level description was given of the EDT used in many declarative debugging techniquesfor lazy functional languages. Here we describe the Haskell implementation of the EDT used in Buddha.Recall that the EDT represents a particular instance of the evaluation of a program. Nodes of the treerepresent function applications that occurred during that evaluation. Each node contains the followinginformation: a string which identi�es the function that was applied; a list of representations of thearguments that the function was applied to; a representation of the result of the application; a listcontaining the children of the node, such that each child corresponds to a function application from theright hand side of the function de�nition that contributed to the result; and a reference to the text of thefunction de�nition (for simplicity a string12).The arguments and result of function applications can be of any arbitrary type. We want to keepa record of the arguments and the result of each application so that during the debugging session wecan print a representation of them to the oracle. Haskell's strong typing will not allow mixed typesto be stored at the same position in an EDT node. Sparud and Nilsson [21] solve this problem byusing existential types, which allow objects of di�erent types at the same position in a data structureproviding such objects are a member of a certain type class. The disadvantages of this approach are thatexistential types are not currently part of the Haskell standard, and are not supported by all Haskellimplementations. Furthermore, every possible type used in a program must be made a member of a12When we present the transformed version of a function we only show the beginning of the string which represents theoriginal de�nition of the function. This is to reduce the length of code listings in the paper.11

particular type class.13 We convert all function arguments and results into a representation of type Termby application of the impure function dirt, described in section 4.2. In the current version of Buddha,Term is a synonym for String, however lower level representations are possible. A Haskell de�nition ofthe EDT type is given in �gure 8.
function textchildrenresultargumentsfunction name

data Tree = Node String [Term] Term [Tree] String

Figure 8: Haskell de�nition of the EDT used in Buddha4.1.2 The transformation algorithm of Naish and BarbourThe original transformation algorithm of Naish and Barbour is de�ned for a simple functional languagesyntax. The intention of the algorithm is to capture the essence of the transformation for a broad classof functional languages. We use the algorithm as the basis for the transformation of Haskell functionswithin Buddha. In this section we de�ne the abstract transformation algorithm, and compare it to thetransformation of Nilsson and Sparud. In later sections we re�ne the transformation to handle someimportant syntactic constructs of Haskell.The Naish and Barbour transformation algorithm is de�ned as follows:For all equations of the form f a1 a2 : : : an = r, the following three transformation steps are performed:1. Rewrite the equation asf a1 a2 : : : an= (v0; t0)wherev0 = r2. Repeat the following step until there are no further applications in r.Let g be a function of arity m. If g b1 b2 : : : bm is an innermost function application in r, replacethe application by vi and add the following equation under the top where clause of f (vi and ti arenew variables, unique in the scope of f)(vi; ti) = g b1 b2 : : : bm3. Add the following equation to the top where clause of f . (t1; : : : ; tp correspond to the ti in theprevious step)t0 = Node "f" [dirt a1; dirt a2; : : : ; dirt an] (dirt v0) [t1; : : : ; tp] (text reference)The de�nition of an innermost application is important in the above algorithm. It essentially meansthe most nested function application within an expression in the right hand side of an equation. Theapplication of built in operators are not considered as candidates for innermost function applications,since the evaluation of such operators is trusted to be correct. The right hand side of an equation mayconsist of several independently nested expressions each with their own innermost application. Whensuch a situation arises we choose the leftmost of the innermost applications, however this is merely out13Although this problem can be somewhat alleviated by automatic type class instance generation from the compiler.12

of convention rather than necessity, as selection of any of the possible innermost applications wouldbe su�cient. Examples of candidate innermost applications are presented as underlined expressions in�gure 9.take 3 (drop 5 (sort xs))(sum xs) + (average (map (+3) (reverse ys)))MyData (plus 1 (sqrt x)) (round y)Figure 9: Candidate innermost applications in example expressionsIn Haskell, functions are de�ned by one or more equations. The above algorithm transforms the entireprogram function by function, such that each function is transformed equation by equation. There arethree important stages in the transformation of an equation in the algorithm. Firstly, the top{level ofthe equation is rewritten to re
ect the fact that the transformed version evaluates to a tuple containingthe original value of the equation and a EDT node. Secondly, the right hand side of the equation isunravelled so that each application is made distinct. Having unravelled the applications on the righthand side, we can access the trees generated when those applications are evaluated. The trees for eachapplication (denoted ti in the algorithm) constitute the children of EDT node for the equation beingtransformed. To be more precise, they are potential children, since some of them may not be evaluatedfor a given execution of the program: we only consider those applications that are eventually evaluatedto be children of an EDT node. However, since we cannot tell in advance which applications will beevaluated for all possible executions of the program, the tree for each application is inserted into the listof children. Later, in section 4.2 we will see that the debugger can determine which children of a nodewere not evaluated and can safely skip over them in its traversal of the EDT. Thirdly, the de�nition ofthe EDT node for the equation is added. Note that the function dirt is applied to the arguments and theresult of the transformed equation in the de�nition of the node. This guarantees that a representation ofthe arguments and result of all functions can be stored within the same EDT.Throughout the algorithm we have assumed that the extra identi�ers that are introduced (the vi andti) are unique in the scope of the equation being transformed. This is not trivial in Haskell, because theidenti�ers within the scope of an equation include all top{level identi�ers (including those imported fromlibraries and other modules), and all identi�ers local to the equation (including identi�ers within scope ofthe top{level where clause of the equation). To guarantee the uniqueness of the introduced identi�ers wemust �rst determine all identi�ers that are within scope, and then choose a number for each new identi�ersuch that the concatentation of the identi�er pre�x (v or t) with the number is unique within the scope.A related problem occurs with the de�nition of the EDT node type. In �gure 8 we de�ne the EDT nodetype Node using the data constructor Tree. If the program being transformed makes use of the same typeconstructor or data constructor as in the de�nition of the EDT node type then an error will occur in thetransformed program. A similar technique to that described above for generating unique identi�ers couldbe used to avoid name clashes in type constructors and data constructors. However, a simpler method isto choose names for the type constructor and data constructor used in the EDT node type such that itis unlikely that a programmer would use those names within their own type de�nitions. In the currentversion of Buddha we do not guarantee the uniquness of introduced identi�ers. However, for simplicty,we assume throughout the rest of the paper that all additional identi�ers that are introduced by thetransformation and the type and data constructors of the EDT node type have the desired uniquenessproperties.An example transformation of the second equation for the insort function of �gure 4 is given stepby step in �gure 10. Step 1 of the transformation corresponds to the �rst part of the algorithm, steps2 through 6 correspond to the second part of the algorithm and step 7 corresponds to the third part of13

1. Rewrite the equation as in the �rst stepinsort (x:xs)= (v0, t0)wherev0 = insert x (insort xs)2. Locate the innermost applicationv0 = insert x (insort xs)3. Replace it with a variable and add a newequation to the where clausev0 = insert x v1(v1, t1) = insort xs4. Locate the next innermost applicationv0 = insert x v1

5. Replace it with a variable and add a newequation to the where clausev0 = v2(v1, t1) = insort xs(v2, t2) = insert x v16. Notice that there are no more applications inthe right hand side7. Add the de�nition of the EDT node to thewhere clauseinsort (x:xs)= (v0, t0)wherev0 = v2(v1, t1) = insort xs(v2, t2) = insert x v1t0 = Node "insort" [dirt (x : xs)] \(dirt v0) [t1, t2] "insort ..."Figure 10: Example transformation of the second equation of the insort function from �gure 4the algorithm. For simplicity we show the transformation as performed on Haskell code, whereas insideBuddha it is performed on the parse tree of the code. Step 7 illustrates the �nal transformed version ofthe equation. Note that the calls to insort (recursively) and insert are to the transformed versions ofthose functions.As can be seen from the �nal transformed version of the insort function in �gure 10, the passingof additional parameters results in a signi�cant growth in the size of the transformed code. Nilsson andSparud [21] describe an almost identical transformation that hides the passing of values and EDT nodesinside a continuation based application operator. The bene�ts of using such an operator are that theresulting transformed code is more concise than that of the transformation used in Buddha, and alsothe need for unique identi�ers is reduced. The key di�erence between the Nilsson and Sparud debuggingtechnique and that used in Buddha is the method for representing the value of arguments and results offunction applications in the EDT. In the former method, a run{time tree is generated by the transformedprogram. The arguments and results of applications are stored directly in the nodes of the run{time tree,using existential types to overcome the strong typing restrictions of Haskell. The nodes of the run{timetree are converted by the debugger upon traversal of the tree to make printable versions of the argumentsand results of applications available. During the conversion of the tree, impure functions are requiredto determine whether the applications were evaluated during the execution of the program, and whetherthe arguments and result of an application were fully or partly evaluated. The transformation of Naishand Barbour avoids the need for two trees to be created and also avoids the necessity of existential typesto hold values in the EDT.4.1.3 Transformation of where clausesHaskell allows local de�nitions to be made inside the de�nition of an equation using a where clause. Themain bene�ts a�orded by such syntax are the provision for local scoping of identi�ers and the simpli�cation14

of the de�nition of equations into smaller sub{expressions. Haskell equations are not limited to a singletop level where clause: they can be arbitrarily nested. However, deep nesting of where clauses can makede�nitions di�cult to read, therefore more than two levels of nesting is considered unusual.insort (x:xs)= sortedwheresorted= insert (headOfList (x:xs)) (insort tailOfList)whereheadOfList list = hd listtailOfList = tl (x:xs)Figure 11: Scoping of identi�ers in where clausesA slightly convoluted de�nition of the second equation for the function insort is given in �gure 11.It has the same intended meaning as the de�nition of insort introduced in section 3.3. The scope(or visibility) of identi�ers is illustrated by the boxes surrounding sections of code. Identi�ers that areintroduced within an enclosing box are only visible inside that box (and any box contained within it).The only identi�er visible outside the de�nition of the equation is the name of the function. Within theoutermost box, the function name, the arguments to the function and the identi�er sorted are visible.Within the second where clause, the identi�ers headOfList and tailOfList are introduced, and are onlyvisible within the second inner box. The local function headOfList is de�ned in the second where clause,and its argument list is only visible within the de�nition of headOfList (inside the innermost box).Where clauses behave in much the same way as top{level equations. This presents a problem for thetransformation algorithm of Naish and Barbour because it is de�ned for a syntax that does not supportlocal de�nitions.We would like the debugger to be able to ask questions about the correctness of local de�nitions for agiven execution of the program. One possible solution, which is the approach implemented in the currentversion of Buddha, is to elevate all local de�nitions in where clauses to top{level function de�nitions.This is not as trivial as it may �rst seem. Consider the equation in �gure 11. The identi�ers x and xs,which are arguments to the top{level equation, are within the scope of local de�nition of tailOfList. Ifwe were to elevate tailOfList to a top{level equation, we would have to explicitly pass the values of xand xs to it when called, making tailOfList a function of two arguments.We do not alter the �nal value of the program by elevating local de�nitions, however, we do signif-icantly alter the structure of the program from its original de�nition. This may cause some confusionto the oracle when the program is being debugged. Although tailOfList has many characteristics of afunction, the programmer may not think of it as a function in its own right, but rather as a sub{partof the insort function, or simply as a macro that expands to a particular value. Therefore, to ask aquestion about the correctness of tailOfList when applied to two arguments would betray the de�ni-tion of the program. On the other hand, elevating headOfList to a top{level de�nition is likely to causeless confusion when debugging because it is de�ned explicitly as a function of one argument, and uponelevation it will remain a function of one argument.
15

The transformation of the equation in �gure 11 after all local de�nitions are elevated to the top{levelis given below:insort (x:xs)= (v0, t0)wherev0 = v1(v1, t1) = sorted x xst0 = Node "insort" [dirt (x : xs)] (dirt v0) [t1] "insort ..."sorted x xs= (v0, t0)wherev0 = v4(v1, t1) = headOfList (x : xs)(v2, t2) = tailOfList x xs(v3, t3) = insort v2(v4, t4) = insert v1 v3t0 = Node "sorted" [dirt x, dirt xs] (dirt v0) [t1, t2, t3, t4] "sorted ..."headOfList list= (v0, t0)wherev0 = v1(v1, t1) = hd listt0 = Node "headOfList" [dirt list] (dirt v0) [t1] "headOfList ..."tailOfList x xs= (v0, t0)wherev0 = v1(v1, t1) = tl (x : xs)t0 = Node "tailOfList" [dirt x, dirt xs] (dirt v0) [t1] "tailOfList ..."After transformation, the (once local) identi�ers sorted, headOfList, and tailOfList appear as ifthey were top{level function de�nitions in the original version of the program. Currently, for simplicity,we employ a transformation based on this approach, however, the questions that are generated by thedebugger on this transformed code are hard to reconcile with the program as it was orginally de�ned.A further potential complication exists with this approach due to the scoping rules of Haskell. Whenelevating a local de�nition we must be careful not to cause a name{clash with an already existing top{levelde�nition. If a name{clash does occur we have to rename the elevated expression to a unique identi�er.This will introduce additional confusion into the use of the debugger when names that were not de�nedin the orginal program appear as part of questions during the debugging session.Thankfully there is a rather simple solution to the problems identi�ed above, that can be implementedwith only a small extension to the transformation described thus far. Essentially we could tag anyde�nitions that were raised from where clauses to top-level de�nitions, and provide extra informationin the EDT node for the de�nition such that the debugger can generate more sensible questions for theoracle. Essentially the extra information we need to know is the name of the top{level equation that thelocal equation came from, the original textual de�nition of the local equation, the number of argumentsthe local equation orginally had, and if the local equation had to be renamed to avoid a nameclash, itsoriginal name. To implement this solution we could extend the de�nition of the EDT node type to include16

a new node type for this special case of elevated de�nition, within which we would store the requiredextra information. A possible extended de�nition of the EDT node type is shown in �gure 12.
local function
name

arguments to
elevated function

text of function containing
the where clause

name of function
containing the where
clause

original name of local function
(the empty list if it wasn’t
renamed)

original right-hand-side
of the local definition

number of arguments
to the local definition

WhereCl String [Term] Term [Tree] String WhereInfo

result children

data WhereInfo = WhereInfo String String String Int

data Tree = Node String [Term] Term [Tree] String |

Figure 12: Possible extension of the EDT node type to incorporate extra information for elevated whereclausesUsing the extended de�nition of an EDT node from �gure 12, the transformation of the elevatedde�nition of tailOfList is given below.tailOfList x xs= (v0, t0)wherev0 = v1(v1, t1) = tl (x : xs)t0 = WhereCl "tailOfList" [dirt x, dirt xs] (dirt v0) [t1] wiwi = WhereInfo "insort" [] "tl (x:xs)" 0During a debugging session, when the debugger encounters a node in the EDT corresponding to aninstance of an elevated where clause, it can make use of the extra in the node to generate more meaningfulquestions, as in the following example.::{where clause in insort}headOfList [1,2,3,4] = 1Correct - Y/N/Q? y{where clause in insort}let (x, xs) = (1, [2,3,4]) in tailOfList = tl (x:xs)tailOfList = [2,3,4]Correct - Y/N/Q? y::If the debugger discovers that the number of arguments of an elevated local de�nition di�ers from thenumber of arguments that it had when de�ned locally, the extra information stored in the EDT nodefor an application of that de�nition could be used to provide suitable context for questions presented tothe oracle. This is illustrated by the example question asked about the correctness of the local de�nitiontailOfList. No further context is required for the question asked about the correctness of headOfList17

because it was de�ned locally as a function of one argument, and when elevated it remained a functionof one argument.4.1.4 Transformation of guarded equationsHaskell allows the right hand side of an equation to have multiple possible de�nitions through the use ofguards. The potential de�nitions for the top{level equation are each preceded by a guard which is simplya boolean expression. During the evaluation of the top{level equation the guards are tested in top{downtextual order until one of them evaluates to true.14 The corresponding equation for the �rst true guard isselected as the de�nition of the top{level equation. Haskell also provides the keyword otherwise whichwill always be selected if all the preceeding guards are false.15 We have already seen the use of guards inthe second equation for the insert function in �gure 4.The Naish and Barbour transformation algorithm must be extended to support guarded equationsbecause they are not part of the syntax for which it is de�ned. Guarded equations pose an interestingproblem for the transformation of equations because the �nal de�nition of the equation is decided duringits evaluation. Guards are expressions that evaluate to a boolean value, and just like any other expressionthey may contain function applications. Therefore, the testing of guards will in some cases cause functionapplications to be evaluated. For successful debugging to take place, such applications must be representedby nodes in the EDT. In general, some number of false guards will be evaluated followed by a �nal guardwhich is true (which may be the catch{all otherwise guard). Function applications may be made duringthe evaluation of any preceding false guards, during the evaluation of the true guard, and �nally duringthe evaluation of the right hand side corresponding to the true guard. The potential children for a nodewhose de�nition uses guards must include all the function applications just mentioned. Therefore wecannot statically de�ne the complete EDT node for an equation with guards as in the third step of thetransformation algorithm, because the potential children of the node will depend on the evaluation ofguards at run{time.Consider the rede�nition of the second equation for the insert function in �gure 13. Note that inthe new de�nition the �rst comparison of x and y is now made in the function gt. We have intentionallyshifted the error in the program to the de�nition of gt, which is intended to be true if its �rst argumentis greater than its second argument. However, as it is de�ned, gt does not re
ect its intended meaning.The important point to note from this new de�nition is that determination of the truth of the �rst guardrequires the application of gt to its arguments. It is essential that we generate a node in the EDT forthis application, because the actual error in the program is in the de�nition of gt. The application of gtto its arguments must therefore appear as a child of the EDT node for an application of this equationfor insert.insert x (y:ys)| gt x y = y : (insert x ys)| x < y = x:y:ys| otherwise = y:ysgt x y = x < yFigure 13: Rede�nition of the buggy insert function, introduced in �gure 4Within Buddha we employ a two stage process for transforming guarded equations. The �rst stageconsists of an application unravelling process similar to the second step of the transformation algorithm.14It is possible there will be no true guards for a given equation. In such a case, alternative equations may be applied.In the absence of alternative equations a program exception will occur, causing the execution of the program to halt.15For convenience, the keyword otherwise is simply another name for the boolean value True.18

However, in this case we must unravel the applications made in all guards, and all their correspondingequations. The unravelling of the �rst guard of insert and its corresponding equation is shown below.The identi�er gval0 represents the value of the �rst guard (either true or false) and the identi�er gtree0represents the EDT node for the application performed in the guard. The identi�er eval0 representsthe value of the equation following the �rst guard, whilst eval1 and etree1 represent the value and theEDT node for the innermost application in the equation respectively.(gval0, gtree0) = gt x yeval0 = y : eval1(eval1, etree1) = insert x ysAfter all the guards and their corresponding right hand sides have been unravelled we move to thesecond stage of the transformation involving guarded equations. A mechanism is needed which canprocess the transformed guarded equations, determine the successful guard (if there was one) and returnthe value of its corresponding equation along with the EDT nodes for all applications made for eachtested guard and the evaluation of the equation. We represent each guard and its corresponding equationby a four element tuple. The �rst element of the tuple contains the value of the guard which can beeither true or false. The second element of the tuple contains a list of EDT nodes that represent potentialapplications in the evaluation of the guard. The third element of the tuple contains the value of thecorresponding equation (if it were to be evaluated). The fourth element of the tuple contains a list of theEDT nodes that represent potential applications in the evaluation of the equation. Therefore, the typeof the tuple is (Bool, [Tree], a, [Tree]). We generate a list of these tuples for every guard{equationpair in top{down textual order. The list is passed to a new function called guards which is de�ned below.guards :: [(Bool, [Tree], a, [Tree])] -> Maybe (a, [Tree])guards gs = guardsAcc [] gsguardsAcc :: [Tree] -> [(Bool, [Tree], a, [Tree])] -> Maybe (a, [Tree])guardsAcc _ [] = NothingguardsAcc acc ((False, gts, _, _):gs)= guardsAcc (acc ++ gts) gsguardsAcc acc ((True, gts, ev, ets):gs)= Just (ev, (ets ++ gts ++ acc))The processing of the list is performed in the accumulator function guardsAcc. Essentially, guardsAcctraverses the list from left to right accumulating the EDT nodes that are potentially evaluated up to andincluding the �rst true guard and its corresponding right hand side. The traversal of the list stops if atuple representing a true guard is found (denoted by the value True in the �rst element of the tuple). Ifa successful guard is found, guardsAcc returns the value Just (val, nodes) such that val correpsonds tothe value of the selected equation, and nodes corresponds to the accumulated list of EDT nodes for alltested guards concatenated with the list of EDT nodes for the selected equation. It is possible that noneof the guards are successful. In this case guardsAcc returns the value Nothing indicating this failure.The only remaining thing to do in the transformation of a guarded equation is to tie the results ofthe guards function into the results of the transformed equation. If a successful guard was found, thenthe value of the transformed equation is equal to the �rst element of the tuple returned by guards andthe children of the EDT node for the equation are the second element of the same tuple. However,if no successful guards were found then we must ensure that the overall evaluation of the transformedequation does not proceed. The complete transformation of the insert function from �gure 13 is some-what more complicated than the transformations presented earlier. Readers interested in the completetransformation of insert are referred to appendix A.19

There is one
aw in the transformation of guarded equations presented above. Haskell allows afunction to be de�ned with multiple equations, where the patterns for those equations are overlapping.In cases where such overlapping equations also involve guards, the above transformation may fail togenerate a su�cient EDT. Consider the simple program below.foo n | isOdd n = []foo n | isEven n = [n]isOdd x = (x `mod` 2) /= 0isEven x = (x `mod` 2) == 0isOddOrZero x = (isOdd x) || (x == 0)Let us assume that the intended meaning of the function foo is to return the empty list for argumentsthat are either the number 0 or odd numbers, and for all even arguments (except 0) it should returna single element list containing that argument. As it happens, this does not equate with the actualmeaning of foo as it is de�ned. For the intended meaning to correspond with the actual meaning the�rst equation for foo should be re{written as \foo n | isOddOrZero n = []". Therefore the error is inthe �rst de�nition of foo because the wrong function is applied in the guard. For example, evaluation offoo 0 results in the value [0], whereas it is intended to evaluate to the empty list. The transformationfor guarded equations presented above will not allow the debugger to locate the correct source of thebug in the application foo 0. The error is in the �rst equation for foo, however since all guards in thatequation fail for the argument 0, no nodes are generated in the EDT for the application of this equationor the failed guard. Instead the second equation is evaluated, and nodes for its application and theapplication of isEven 0 are stored in the EDT. Since isEven is correct, the debugger will conclude thatthe error is in the second equation for foo when in fact the error is in the �rst equation.In the current version of Buddha we disallow functions de�ned by multiple equations with overlappingpatterns if any of those equations uses guards. In future versions of the debugger we hope to extend thetransformation to handle such function de�nitions.4.1.5 Transformation of curried function de�nitionsSuppose we de�ne a function which evaluates to one plus the value of its numerical argument. A simplede�nition of such a function is given for inc below:plus x y = x + yinc x = plus 1 xIf we apply our transformation to this program, the transformed version of inc would look like:inc x= (v0, t0)wherev0 = v1(v1, t1) = plus 1 xt0 = Node "inc" [dirt x] (dirt v0) [t1] "inc ..."The resulting type of the transformed version of inc is Num a => a -> (a, Tree), just as we wouldhave expected it to be. However, it is also possible to de�ne a curried version of inc as in the following:inc = plus 1The curried version has the same type and equivalent meaning to the uncurried version above. However,when we apply our existing transformation to the curried version of inc we get:20

inc= (v0, t0)wherev0 = v1(v1, t1) = plus 1t0 = Node "inc" [] (dirt v0) [t1] "inc ..."The transformed version of the curried inc is not type correct. Notice that the type of the expressionplus 1 is functional, however the transformed version expects the expression to a non{functional value(namely a two element tuple). From this simple example it can be seen that the current transformationis insu�cient for curried function de�nitions.This problem can be easily solved if the arities of curried function de�nitions are known in advance ofthe transformation. If the arities of curried function de�nitions are known, we can compare the numberof formal arguments in the de�nition with the number of arguments that an uncurried version of thefunction would need. If the number of formal arguments in the de�nition is less than the arity of thefunction, we can supply additional arguments to the function de�nition such that the di�erence is met. Inthe example above, this would simply mean converting the curried de�nition of inc into its non{curriedde�nition before it is transformed. It is safe to add additional parameters to curried function de�nitionsbecause the curried and uncurried versions of the same function de�nition have the same meaning.Correct determination of the arity of a function is di�cult without type information for the function.It is possible to automatically infer the types of functions in a Haskell program using the type analysis ofthe compiler or interpreter. In the current version of Buddha we do not use type analysis to determinethe types of functions, and hence their arities. Instead we require that curried function de�nitions besupplied with correct type signatures in the source of the program. Where type signatures are providedthe arities can be calculated directly. Functions without type signatures are assumed to be de�ned witha full set of formal arguments. In such cases the arity of a function is calculated from the number offormal arguments in its de�nition.4.1.6 Transformation of higher{order argumentsPreviously, in section 3.4, we proposed that the domain of functions and their transformed counterpartsare not the same. Where functions appear in the original program, transformed versions of those functionsappear in the transformed program, including functions in higher{order arguments. This is demonstratedusing the program in �gure 14.incs :: [Int] -> [Int]incs xs = map (plus 1) xsmap :: (a -> b) -> [a] -> [b]map f [] = []map f (i:is)= (f i) : (map f is)plus :: (Num a) => a -> a -> aplus x y = x + yFigure 14: De�nition of the higher{order function mapThe function incs increments each element in a list of integers by one. It does so by passing thefunction plus 1 as a higher{order argument to map, which recursively applies its �rst argument to everyelement of the list as its second argument. All non{functional objects in the original program retain21

their value (and hence type) in the transformed version of the program. However, functional objects aretransformed and hence do not retain their original value (or type) in the transformed program. The typeof plus 1 is Num a => a -> a, however in the transformed version of the program the type of plus 1is Num a => a -> (a, Tree).The di�erence in the domains between functions and their transformed versions does not in itself posea problem for the debugging scheme provided that there is a one{to{one mapping between them. The truedi�culty of higher{order arguments was highlighted in section 2.3: functions are abstract objects whichdo not have inherent printable representations. However, for the oracle to decide upon the correctnessof a function application we must display a representation of the arguments that were involved in theapplication. We cannot rely on the names of functions to be retained during the execution of the program,and hence dirt may not always generate suitable representations of higher{order arguments. Therefore,we need to transform higher{order arguments so that we can generate a printable representation of them.Nilsson and Sparud [15] propose that functional arguments be transformed into a tuple such thatthe �rst element of the tuple is the function itself and the second element is a printable representationof the function. For example, the function plus 1 which is passed as an argument to the functionmap in �gure 14, would be transformed into the tuple (plus 1, "(plus 1)"), and the type of thetransformed version of map will become (a -> (b, Tree), String) -> [a] -> ([b], Tree). Weadopt this approach in Buddha for higher{order arguments that are curried function applications (suchas plus 1).To incorporate the transformation of curried functions as arguments, we make the following threemodi�cations to the algorithm presented in section 4.1.2.1. Alter the de�nition of the second step to read:Repeat the following step until there are no further applications in r.Let g be a function of arity m.If g b1 b2 : : : bk is an innermost function application in r, and k < m, replace the applica-tion by funci and add the following equation to the top where clause of ffunci = (g b1 b2 : : : bk; "(" ++ "g" ++ args ++ ")")(funci is a unique identi�er in the scope of f and args is the concatenated list of stringrepresentations for b1 b2 : : : bk).Else if k = m, then perform the operation as originally de�ned in this step.2. Add the following new stage to the second step of the algorithm:If argument ai of f is functional (i.e. has arity > 0), rewrite any occurrence of ai in theleft hand side of the de�nition and any non{application of ai in the right hand side of thede�nition as (ai; repi). Whenever ai is applied in the right hand side it remains textuallyunchanged.3. Re{de�ne the third step to read:Add the following equation to the top where clause of f . (t1; : : : ; tp correspond to the tiin the previous step)t0 = Node "f" [argrep1; argrep2; : : : argrep3] (dirt v0) [t1; : : : ; tp] (text reference)If argument ai is functional then argrepi is repi, otherwise it is dirt ai.Applying these extensions to the algorithm, the equation for incs in �gure 14 transforms into thefollowing de�nition: 22

incs xs= (v0, t0)wherev0 = v1func1 = (plus 1, "(" ++ "plus " ++ "1" ++ ")")(v1, t1) = map func1 xst0 = Node "incs" [dirt xs] (dirt v0) [t1] "incs ..."And the second equation for map transforms into the following de�nition:map (f, rep1) (i:is)= (v0, t0)wherev0 = v1 : v2(v1, t1) = f i(v2, t2) = map (f, rep1) ist0 = Node "map" [rep1, dirt (i : is)] (dirt v0) [t1, t2] "map ..."Unfortunately this method is not a complete solution for higher{order arguments. Consider the smallprogram in �gure 15. Under the current transformation, it is assumed that functional arguments willbe apparent from the type signature of the function. However, this is not the case for the polymorphicfunction reverse, which is de�ned over lists of any type. In order to obtain a printable representationof the argument to reverse, the debugger will cause dirt to be applied to that argument. However, inthe case that the elements of the list are functional, dirt cannot be guaranteed to supply a meaningfulrepresentation of those elements. As we can see from the function main reverse can be applied to a listof functions.main :: [a -> b]main = reverse [plus x | x <- [1,2,3]]plus :: Num a => a -> a -> aplus x y = x + yreverse :: [a] -> [a]reverse [] = []reverse (x:xs) = (rev xs) ++ [x]Figure 15: Polymorphic function reverse and higher{order argumentsThis problem can be solved if we know the type of every identi�er in the program text. Essentially,we can wrap every object that is passed as an argument to a function in a new data constructor. Thenew data{type should distinguish between functional values and non{functional values. For example itmight look like:data Arg a = Fun a String | NonFun aFor functional values we store the function and a string representation of the function, and for non{functional values we simply store the value itself. We then de�ne a function dirt' to be used in place ofdirt in the usual transformation. The operation of dirt' is such that it �rst checks to see whether itsargument is wrapped in the constructor Fun, if so it simply uses the string representation of the function,otherwise it proceeds with the usual lower level generation of a representation employed by the currentversion of dirt. 23

We do not have su�cient type information available in the current version of Buddha to perform thismore thorough treatment of higher{order arguments, however we hope to incorporate the technique infuture versions of the debugger.4.2 The impure function dirtThe primitive function dirt16 is central to the success of the Naish and Barbour debugging technique.In this section we discuss the implementation of dirt using the internal interface of the Hugs interpretedHaskell system. We discuss the fundamental requirements of dirt, and describe how they are satis�edin our system.The impure function dirt serves two important purposes within the debugger. Firstly, it provides amethod for representing all arguments and results of functions under a single type. This means that nomatter what type an object is in the original program we can always store a representation of it in theEDT such that the strong typing constraints of Haskell are satis�ed without the need for existential types.This property is evidenced by the type signature of dirt which is a -> Term. Secondly, it provides arepresentation of arguments and results of functions which re
ects the extent to which they are evaluatedwhen it is applied to them. In other words, dirt returns a representation of the state of evaluation of itsargument which may not be equivalent to its declarative value.Naish and Barbour describe the following three fundamental requirements that must hold for animplementation of dirt:1. It must not be applied to its arguments until they are in their �nal state of evaluation which isequal to their state of evaluation at the end of the execution of the original program. In otherwords, applications of dirt must be evaluated lazily.2. It must not force the further evaluation of its argument.3. It must return a representation of its argument that contains su�cient information for the oracleto decide whether an application in an EDT node was correct or erroneous.The �rst requirement constrains the time at which dirt is applied to its argument. This is ultimatelydetermined by the evaluation of the debugger, and so we cannot control this property from within theimplementation of dirt itself. To illustrate that this �rst requirement can be satis�ed within Buddha,we must �rst describe the order of evaluation that occurs inside the debugger. The debugger is writtenin Haskell, and so its evaluation is lazy. The laziness of the evaluation means that all computations aredriven by the need to produce output to the oracle. We rely on this laziness to ensure that dirt is appliedto its argument at the desired time.Recall that each function in the transformed program returns a tuple containing the value of theoriginal function when applied, and an EDT representing the computation of that value. The debugger�rst prints the �nal result of the original program, which drives the complete evaluation of the �rst elementof the tuple returned by the topmost application in the transformed program. The evaluation of the �rstelement of this tuple is equivalent to the evaluation of the original program: the EDT is not neededto compute this value, and so up to this point it is not evaluated. After the �nal value of the originalprogram is printed, the debugger then begins to traverse the EDT starting at the node correspondingto the topmost application. The nodes at each level in the EDT are evaluated as the tree is traversed.Each node that is visited is evaluated to the extent that su�cient information can be presented to theoracle in order for the correctness of the application to be determined. The information presented to theoracle at each node includes the name of the function that was applied and the arguments and result ofthat function (to the extent that they were evaluated at the end of the original program). Therefore,the evaluation of each application of dirt is delayed until the value of that application is needed to be16Display Intermediate Reduced Term. 24

displayed to the oracle. Since the evaluation of the original program proceeds to completion before thedebugger begins to traverse the EDT we can be sure that dirt will be applied to its arguments in theirmost evaluated form.The second requirement ensures that the evaluation of the original program is preserved in the evalua-tion of the transformed program. To demonstrate the necessity of this constraint we present the exampleprogram in �gure 16.take n as| as == [] = []| n == 0 = []| otherwise = head as : (take (n - 1) (tail as))main = take 3 [1..]Figure 16: Example program where an in�nite argument is only partially evaluatedDuring the evaluation of main, take is applied to an in�nite list of integers. At the end of thecomputation of main, the in�nite list is only evaluated three elements deep: the remainder of the listis left unevaluated. In the transformed version of take, dirt will be applied to the arguments n andas. If dirt were to force the evaluation of its argument, the application dirt as would loop inde�nitelybecause the full evaluation of as is an in�nite computation. This is obviously an undesirable propertysince the original program was terminating on this input. It is also possible that (for some reason) dirtmay only cause a partial further evaluation it argument, and hence avoid non{termination. However,it is still desirable to avoid any further computation if dirt is to reliably represent objects only to theextent that they were evaluated in the original program.In order for dirt to satisfy this second requirement, it must be able to inspect the internal Haskellrun{time representation of an object without causing any further evaluation of the object. Such anoperation is impossible to perform within the con�nes of the Haskell language. This is because withinHaskell we can only reason about the value of an object, we cannot reason about its state of evaluation.Therefore, dirt breaks the declarative semantics of Haskell. However, for the purposes of providing anadequate debugger, this is a necessary evil.The third requirement is di�cult to de�ne precisely. Obviously, arguments to dirt that are fully eval-uated should retain their usual textual representation. However, objects that are only partially evaluatedare harder to represent because the unevaluated parts have no syntactic counterpart within Haskell. Thekey observation to be made here is that unevaluated expressions at the end of the original program execu-tion had no in
uence over the �nal value of the program. Therefore, the value of unevaluated expressionsis not important in determining the correctness of an application. The function dirt can safely representthe unevaluated parts of its argument with a suitable symbol17, indicating that they were unevaluated,and that the correctness of the application does not depend of their value. The value that dirt returnsdepends on the extent to which its argument is evaluated rather than the value of its argument, and sodirt is not referentially transparent.To understand our implementation of dirt it is helpful if one has a moderate conception of the evalua-tion mechanism employed in Hugs. Our description will necessarily be brief and incomplete, however, thereader is directed to The implementation of the Gofer functional programming system [6] which describesin detail the implementation of the programming system upon which Hugs is based.The entire Hugs system is implemented in the C programming language. The execution of a Haskellprogram in Hugs consists of four stages. In the �rst stage the Haskell text of the program is parsedand checked for syntactic correctness. In the second stage various static analyses are performed on theparsed program including type analysis. If the static analysis stage is satis�ed the program is translated17In many cases an underscore will be su�cient. 25

in the third stage into a simple internal language. Finally, in the fourth stage the translated programis evaluated by an execution mechanism which imitates the operation of an abstract machine de�ned onthe internal language.During the execution of a program the Hugs evaluation mechanism manipulates two memory segments.The �rst segment is called the stack. During program execution the stack is used to hold sub{expressionsthat are being evaluated, intermediate values and function arguments. The second segment is called theheap. The heap is used to store both program expressions (represented as graphs) and program data.Initially, the top{level expression to be evaluated in a program resides in the heap. It is copied intothe stack, and the internal function eval() reduces the expression into a simpli�ed form called weakhead normal form18. For example, the value 12 is the weak head normal form of the expression 6 * 2.The reduction of an expression may cause further expressions to be copied onto the stack, which inturn must be reduced into weak head normal form by eval(). Program expressions and program dataare represented by compositions of an internal abstract data type called a cell. Almost every objectfrom a Haskell program is mapped to a cell composition within Hugs, including all the basic types,composite data structures such as tuples and lists, and abstract objects such as expressions (or functionapplications). Indeed, the Hugs heap and stack are simply arrays of cells. For e�ciency reasons, thelow{level implementation of the cell data type is rather complicated. Within the rest of this section wereason about cells in an abstract manner to simplify the discussion.The operation of dirt when applied to a Haskell object is broken into two steps. In the �rst stepa copy of the cell representation of the object is obtained from the Hugs heap. In the second step thecell is dissected to reveal its internal contents. Composite cell structures are dissected recursively untilthe cell structure has been completely inspected, or su�cient information about the Haskell object hasbeen obtained. To implement these two steps we make use of two primitive functions from the Hugsspeci�c library HugsInternals.hs: getCell and classifyCell. Both functions are called from withinthe Haskell code of the debugger, however, in order for them to interface with the internal Hugs systemthey are implemented in C and are compiled into the Hugs executable program.The task performed by getCell is simple: given an argument of any Haskell type, it will return a valueof type Cell that corresponds to the internal representation of the argument. The type Cell is built intothe Hugs system, and is essentially a convenient Haskell wrapper for the internal representation of a cell.Therefore, getCell provides the required mechanism for implementing the �rst stage of dirt. Once weobtain the internal representation of a Haskell object we must implement a mechanism for inspecting itscontents. This is the task performed by classifyCell. Given an argument of type Cell, classifyCellwill return a value of type CellKind which identi�es what type of internal structure the cell representsand what its contents are. The CellKind data type is implemented in Haskell, however, it is partiallyde�ned in terms of the type Cell to allow for composite objects such as data structures and functionapplications. Below is the Haskell de�nition of the CellKind type, as provided in the HugsInternals.hslibrary.data CellKind= Apply Cell [Cell]| Fun Name| Con Name| Tuple Int| Int Int| Integer Integer| Float Float| Char Char| Prim String| Error Cell18Note that not all expressions can be reduced to weak head normal form. For example, the application of inf (from�gure 1) to a numeric argument is non{terminating because the application does not have a weak head normal form.26

The Apply constructor allows for applications to be represented within the CellKind type. At �rstsight, the internal representation of objects appears to allow illegal constructs. For example, it seemsplausible from the de�nition of CellKind that a number could be applied to a character, which isnot a valid or sensible operation from a Haskell perspective. However, the strong typing constraintson the original Haskell program ensure that only type correct structures will appear in the internalrepresentation of objects. Therefore we do not need to perform any type checking when we inspect theinternal representation of objects. Within dirt we completely unfold the CellKind data structure intoa new data structure, which is identical to the CellKind structure, except that all Cell elements arerecursively expanded.Consider the internal representation of the in�nite list which is passed as an argument to take in�gure 16. At the end of the evaluation of the function main the list is only evaluated three elementsdeep. A visual representation of the list at the end of the evaluation of main is provided in �gure 17.Essentially the �gure illustrates the CellKind representation of the list such that all Cell elements areexpanded.

Con ":"

Apply (:) [(3),]

Apply (f) (args)

Apply (:) [(1),]

Apply (:) [(2),]

Int 1

Int 2

Int 3

ii

iii

v

vi

viii

ix

([1..])

vii

x

i

iv

Figure 17: Internal cell structure of the list [1..] when evaluated three levels deepThe rounded boxes and the jagged box in the diagram represent each unique cell in the internalrepresentation of the list. The outermost cell representing the entire list resides at the top left corner ofthe diagram. The list is constructed by a series of applications of the list constructor cell (\:") to twoargument cells. The �rst argument to each application of the list constructor cell is an element of thelist (in this case an integer cell) and the second argument of the list constructor cell is an applicationof cells that represents the tail of the list. Notice that the last element of the list does not contain anapplication of the list constructor cell, but rather an application of a function. This cell represents anunevaluated expression (hence the jagged box), and corresponds to the unevaluated tail of the in�nitelist. The function applied in this cell is an internal Hugs function that generates the consecutive elementsof an in�nite series of integers.The cell representation of the list is dissected from the top left corner to the bottom right cornerof the diagram. Each labelled arc in the diagram represents the expansion of a cell into an object oftype CellKind. The cell structure of the list is expanded according to the ascending order of arc labels.The recursive expansion of the structure halts when the application of a function is discovered. Thepresence of a function application within a data structure is conclusive evidence that this branch of thedata structure has not been evaluated, and so the expansion of the cell structure corresponding to thisbranch may safely stop at this point. As dirt traverses the cell structure it generates a representationof the structure. At present, this representation is a string, however, this is only for convenience, and27

other representations are possible. The representation of the cell objects corresponding to values of basictype are simply the string representation of the data inside the cell. For example, the cell containing theinteger 12 (Integer 12), is simply represented as the string \12". Function applications are CellKindstructures of the form: Apply (Fun f) [arg1; arg2; : : : ; argn]. The presence of a function application atthe end of the computation means that the application was not evaluated, hence function applications arerepresented by an underscore character (_") (except when at the end of a list, for which we use anothernotation described below). Applications of data constructors (except the list constructor) are representedby the name of the constructor (as a string) followed by the string representations of the arguments tothe constructor, which are parenthesised in the case that the arguments are also applications of dataconstructors. Applications of the list constructor are treated di�erently, so that the Haskell short{handnotation for lists is generated. Where the tail of a list is found to be unevaluated, a special (non{Haskell) notation is used to indicate this occurrence. So, for example, the representation of the list [1..]when evaluated three elements deep is the string \[1, 2, 3, ...?]". In appendix B we demonstratethe transformation of a buggy version of take along with an example debugging session applied to thetransformed program. The debugging session illustrates the questions that the debugger presents to theoracle when partially evaluated data structures are involved.There is one �nal concern in the implementation of dirt that we have failed to mention. It is possiblethat the cell structure for a Haskell object contains cycles. For example, in the de�nition of the in�nite listof ones \ones = 1:ones", both occurrences of the name ones are represented by the same cell internally.We solve this problem by keeping a list of the predecessor cells for each cell that is expanded. When acell is encountered, we compare it to each element of its list of predecessors. If a match occurs we havefound a cycle in the cell structure. Cycles in the cell structure are tagged with a special label and arenot further traversed.4.3 Traversal of the EDT in search of topmost buggy nodesWhen the transformation of the original program is complete the transformed code is loaded into theinterpreter, executed, and the EDT that results from the execution is traversed by the debugger insearch of a topmost buggy node. We refer to this process as error diagnosis, the implementation of whichcorresponds to the second level of the Nilsson and Sparud debugging architecture described in section 3.3.In this section we present a simple algorithm for traversing the EDT which is guaranteed to �nd at leastone topmost buggy node if the top node in the EDT is erroneous. Naish and Barbour present an errordiagnosis algorithm in [11], however it does not give an accurate account of how the interaction with theoracle ought to be implemented. In our algorithm, the interaction with the oracle is explicit. To reducethe length of this section we use the Haskell code taken directly from the implementation of Buddha todescribe the algorithm. This is possible due to the high{level nature of the Haskell language. Althoughthe code makes use of monadic I/O to interact with the oracle, it is not necessary for the reader to haveknowledge in this area.The de�nition of the code for error diagnosis is provided in a module called StdBuddhaLib.hs. Thismodule is imported in the de�nition of the transformed program, so that the error diagnosis code canexecute the transformed program to generate the EDT.Let us consider the structure of the EDT again. Each node represents an application of a function.The children of a node are stored as a list inside the node. The top node of the EDT represents thetopmost application in the executed program, and the leaves of the EDT are nodes which do not have anychildren (the absence of which is indicated by an empty list inside the node). Error diagnosis consists ofa partial depth{�rst traversal of the EDT which terminates upon the location of a topmost buggy node.The children of correct nodes are not visited in the traversal. Nodes representing applications that werenot evaluated (and hence the sub{trees de�ned by those nodes) are ignored in the traversal.The error diagnosis algorithm recurses through three stages. The operation of each stage is describedin the following list, along with its implementation in Haskell.28

1. The �rst stage of the diagnosis is implemented by the function debug, which checks if its argumentnode was evaluated. The determination is based on the result of the application, and is performedin the function isEvaluated. If the node was not evaluated, the
ag Nothing is returned to indicatethat this branch of the EDT should be ignored. If the node was (at least partially) evaluated thenode is passed to the second stage of the diagnosis (implemented by the function debugNode) to bechecked for correctness.debug node= do isEvaluated node >>= \e ->case e ofTrue -> debugNode nodeFalse -> return NothingIn the current implementation of the function dirt, unevaluated values are represented by theunderscore character. Therefore, the determination of whether a function was evaluated is simplya comparison of the result of the application against the string containing only the underscorecharacter.isEvaluated node@(Node _ _ result _ _)= do case result of"_" -> return False_ -> return True2. The second stage of the diagnosis is implemented in the function debugNode, which presents thenode to the oracle. If the oracle deems the node to be correct, then the
ag Nothing is returnedto indicate that this branch of the EDT should not be further traversed. If the oracle deems thenode to be incorrect, the children of the node are checked for correctness in the third stage ofthe diagnosis (implemented by the function debugChildren). The interaction with the oracle isprovided by the function correct and the presentation of the node is implemented by the functionshowNode (which is not de�ned here).debugNode node@(Node _ _ _ children _)= do (showNode node)putStr "\n"correct >>= \r ->case r ofYes -> return NothingNo -> debugChildren node childrenThe interaction with the oracle is rather simplistic. The function showNode displays the contentsof the node to the oracle. It is at precisely this stage that the applications of dirt in the nodeare evaluated. Essentially, showNode prints the name of the function, the representations of itsarguments and result to the display. The oracle is queried about the correctness of the applicationby the function correct, which loops inde�nitely until either a \y" (for yes) or a \n" (for no) issupplied by the oracle.
29

correct= do putStr "Correct - Y/N/Q?\n"getLine >>= \r ->case r of"y" -> (return Yes)"Y" -> (return Yes)"n" -> (return No)"N" -> (return No)a -> correct3. The third stage of the diagnosis is implemented by the function debugChildren which checks thechildren of an erroneous node for correctness. Its arguments are a single node (called the parent)and a list of nodes which are the children of the parent. Starting from the front of the list thechildren are passed one by one to the �rst stage of the diagnosis to be checked for correctness.If the function debug returns the
ag Nothing then either that child was not evaluated or it wasdeemed correct. In such a case the next child in the list of children is passed to debug. If a child isdeemed erroneous, then the sub{tree de�ned by that node is recursively traversed by debug whichwill eventually return a topmost buggy node. If all the children of a parent node are deemed to becorrect, or the parent does not have any children, then that node must be a topmost buggy node,so it is returned by the function debugChildren as the source of the error in the EDT.debugChildren parentBug []= return (Just parentBug)debugChildren parentBug (c:cs)= do (debug c) >>= \r ->case r ofNothing -> (debugChildren parentBug cs)_ -> (return r)The whole diagnosis is driven by the function buddha.buddha (result, tree)= dofinalResult resultbuggyNode <- debug treeoutputResult buggyNodeThe argument to buddha is the top level application of the transformed program. The evaluation ofthe original program is forced to completion by the function finalResult which prints �rst element ofthe tuple returned by the application. The top node of the EDT (which is the second element of thetuple returned by the application) is then passed to the function debug which begins the �rst stage ofthe recursive diagnosis algorithm. The topmost buggy node returned by debug is passed to the functionoutputResult which displays the erroneous node and the textual de�nition of the equation that wasapplied the node.5 Related workThe development of declarative debugging techniques has progressed signi�cantly since the seminal workof Shapiro [18]. Originally, declarative debugging was applied to Prolog programs. Recently, much re-search has been invested into adapting the ideas of declarative debugging to other programming languages.30

The motivation for this research has been provided by the success of the original Prolog debugging sys-tems and the impracticality of traditional debugging techniques for non{imperative languages. Nilssonand Sparud [15] provide a detailed historical perspective of debugging lazy functional programming lan-guages. In particular they note that some of the earliest work in the �eld was performed by Hall andO'Donnell [2], however, many of the problems discussed in our paper are avoided in the work of Hall andO'Donnell because their target language was untyped. Although there has been a reasonable amountof e�ort directed at debugging lazy functional languages, there remains a dearth of suitable debuggingsystems for languages such as Haskell. In this section we discuss three approaches to satisfying the needfor debugging systems for lazy functional languages. The �rst two approaches are based on declarativedebugging, and have been referred to signi�cantly throughout this paper. The third approach marks adeparture from declarative debugging, and represents an alternative direction of research in the �eld.5.1 Naish and BarbourThe work by Naish and Barbour [11, 10] provides the basis upon which Buddha is implemented. Thespeci�cation of a declarative debugger for a logical{functional language NUE{Prolog is given in [10].Many issues that e�ect the implementation of a debugger for Haskell are not encountered by the NUE{Prolog debugger. This is because NUE{Prolog and the debugger are both implemented in Prolog, whichsimpli�es the creation of the EDT and the provision of low{level primitives. The speci�cation of a moreportable declarative debugging system for lazy functional languages is given in [11], which provides thealgorithm presented in section 4.1.2, and a high{level outline of the function dirt. Naish and Barbouralso brie
y discuss means for improving the memory e�ciency of their debugging technique, which wehope to incorporate into future versions of Buddha.195.2 Nilsson and SparudNilsson and Sparud have contributed signi�cantly to the �eld of declarative debugging for lazy functionallanguages both independently [12, 13, 14, 19, 20] and in collaboration [15, 21]. The extent of their workcovers the generation of EDTs via modi�ed language implementation and source to source transformationof program de�nitions. The work of Nilsson and Sparud has been referred to throughout this paper: insection 3.2 we discussed both of their EDT generation methods; in section 4.1.1 we compared the structureof their EDT to that used in Buddha; and in section 4.1.2 we brie
y mentioned the di�erences betweentheir source transformation and that of Naish and Barbour.The objective of Nilsson and Sparud is roughly equivalent to that of Naish and Barbour, which is toprovide a declarative debugging technique suitable for a large class of modern lazy functional languages.Ultimately, the main di�erence between the two approaches is the way in which representations of objectsare stored in the EDT. This is evidenced by the low level primitives that each approach requires. Nilssonand Sparud [15] suggest that their technique may be more portable than that of Naish and Barbourbecause the success of dirt when applied to higher{order arguments requires the names of functions tobe maintained during the execution of programs, which is not done in some Haskell implementations.20We acknowledge this criticism, and in the implementation of Buddha we adopt a similar source leveltransformation of higher{order arguments as that proposed by Nilsson and Sparud, thus improving theportability of the debugger to other Haskell implementations.An attempt to implement a debugger for Haskell based on the work of Nilsson and Sparud is presentedby Hannan [3]. The current implementation of Buddha makes use of the Haskell parser and arity analyserfrom this work. Unfortunately, the required low{level primitives of the technique were not implemented,19For details of the memory usage of Buddha, and potential improvements, see section 7.2.20In particular, the names of user{de�ned functions are not maintained by the run{time system of the Chalmers Haskellimplementation HBC. 31

thus limiting the use of the debugger to a subset of Haskell that does not allow lazy functions or dataconstructors.5.3 Kishon and HudakA completely di�erent approach to debugging lazy functional languages than the previous two mentionedis taken by Kishon and Hudak [1]. They de�ne a method for semi{automatically generating a family ofsource{level program monitors such as pro�lers, tracers and debuggers, by combining the continuationsemantics of the language with a speci�cation for the desired monitor. The work of Kishon and Hudakrepresents a formal approach to the development of program monitors, and makes use of the similarities invarious program transformation techniques to produce an overall method which is both provably correctand
exible. The usability of their resulting debugger is hindered by the fact that it re
ects the lazyevaluation of programs, making the order in which questions are asked rather confusing. Furthermore,the di�culty of both developing continuation semantics for a large language like Haskell, and specifyingthe desired monitor properties of a complete debugging system may further prohibit that practical useof their approach.6 ContributionWe believe that Buddha is a signi�cant advancement of debugging technology for the Haskell programminglanguage. Our implementation compares favourably to the debugging systems described by Nilsson andSparud [15]. The advantage of our system over theirs is that we only require the construction of a singleEDT, which does not need existential types to satisfy the type constraints of Haskell. The closest knownimplementation to Buddha is the debugger for the language Gofer, by Hannan [3], which is based on thework of Nilsson and Sparud. Hannan's system supports more syntax than Buddha, but does not handlelazy functions correctly, and therefore is severely limited in its application.Our biggest achievement was the provision of the low level function dirt. This is the crux of theNaish and Barbour technique, which previously had only been implemented in a toy language (namelyNUE{Prolog). With the aid of the internal interface library provided by the standard Hugs distribution,we were able to code dirt without any modi�cations to the underlying language implementation. Thisallows Buddha to be executed on any Hugs interpreter that supports the internal interface library.The development of a debugger for a moderate subset of the Haskell language is the most tangible out-come of our work. However, our contribution to the �eld of debugging lazy functional languages extendsfurther than the implemented system. We have taken the initial work of Naish and Barbour and shownthat an extension of their technique is applicable to a complex modern lazy functional language. We havedemonstrated how the two important syntactic constructs of where clauses and guarded equations can besupported in the transformation of programs, and identi�ed the di�culties of transforming functions withhigher{order arguments. Although such details are speci�c to the target language, we believe that theyhave not been adequately covered in the literature. We have also attempted to argue the correctness ofthe declarative debugging technique for lazy functional languages, which is an issue that we feel deservesmore formal attention than it is currently given by researchers in the �eld.The current version of Buddha consists of approximately 4000 lines of Haskell code, nearly 1000 ofwhich are due to the parser and arity analyser of Hannan [3].21 The remaining 3000 lines of code werewritten entirely by myself over a period of about six months. The underlying transformation algorithmused in Buddha is due to Naish and Barbour [11], which also incorporates a high{level speci�cationfor the impure function dirt. However, the implementation of the transformation and the extensionsdiscussed in this paper are due to my myself, as is the implementation of dirt. The approach taken to21Minor modi�cations were made to the parser to assist its integration into the Buddha implementation.32

transforming higher{order arguments is derived from the work of Nilsson and Sparud [15], although theadaptation to the transformation employed in Buddha is due to myself.7 Further workWe believe that Buddha provides a substantial proof of the declarative debugging concept for the Haskelllanguage, however there are many modi�cations that can be made in order to make it a more usefulsystem. In this section we discuss various extensions to the work described in this paper, which we hopeto incorporate in future versions of Buddha.7.1 Supporting the full Haskell syntaxIn section 2.6 we mentioned that Haskell is a syntactically rich language, and that various syntacticconstructs are not yet supported by the transformation employed in the debugger. The most notableof the unsupported syntactic constructs are lambda expressions, let expressions, case expressions andlist comprehensions. Furthermore, we currently disallow functions de�ned by multiple equations withoverlapping patterns if any of those equations uses guards22. Obviously, for Buddha to be regarded as acomplete debugger for Haskell, such syntactic restrictions must be eliminated.7.2 Improving the memory consumption of BuddhaThere are two aspects of memory usage that may prohibit the use of Buddha as it is currently imple-mented. The �rst aspect of memory consumption involves the size of the EDT that is generated duringthe debugging session. The full EDT must contain a node for every application that was made during theevaluation of the program, however, due to lazy evaluation only those nodes which are actually traversedby the debugger will be constructed. If the number of nodes traversed in order to locate a topmostbuggy node is small, then the memory consumed by the EDT may be signi�cantly less than expected.Naish and Barbour [11] suggest that we can further reduce the size of the EDT by avoiding the creationof nodes for functions which are trusted to be correct, for example, functions included from standardlibraries. The second aspect of memory consumption is more severe than the �rst. During the executionof the original program, intermediate data structures may be created which are needed only temporarily.Garbage collection can free the memory used by such data structures after they are no longer needed,thus minimising the amount of memory used by the program at any instant. In the transformed versionof the program, such garbage collection of intermediate data structures is prohibited because the EDTmust maintain a reference to them in case they are needed to be displayed in a question to the oracle.Therefore, memory which would ordinarily be reclaimed by the garbage collector is kept live by the EDT,which introduces a space leak into the transformed program. The memory consumption of the debuggeris thus proportional to the length of the program evaluation, and is at least as expensive as executingthe original program without garbage collection.Naish and Barbour [11] propose to solve the space leak introduced by the transformed program byinitially only creating the top few levels of the EDT. The lower levels of computation are provided by callsto the original code of the program, thus avoiding the generation of a complete EDT for the execution.When the leaves of the partial EDT are encountered, the code for the sub{computation at that pointis called to further (partially) expand the EDT at the leaf. The main cost of this solution is that sub{computations may be repeatedly (partially) evaluated. If those sub{computations are expensive, there{evaluation of them could dramatically slow the progress of the debugger.It is proposed that the function dirt can be used to drive the computation to reconstruct the sub{treeat a leaf of the partial EDT. Consider a hypothetical node at the fringe of a partial EDT: by observing22The reader is directed to section 4.1.4 for a discussion of this restriction.33

the representation of the result of the application at the node, we can determine the extent to whichthe application was evaluated (dirt already provides us with this information). The sub{tree at thenode can be expanded by forcing the re{evaluation of the application to the extent that the result ofthe re{evaluation is equivalent to the representation of the original evaluation at the node. For the re{computation to be forced to the correct extent, we must be able to manipulate the reduction mechanismused by the underlying language implementation. Within Hugs this could be achieved by stepping throughthe reduction loop performed by the internal function eval(), and continually comparing the state ofreduction of the re{evaluated application against the representation of its original state of reduction inthe EDT. We are con�dent that this can be achieved on top of the current version of dirt, however, weare currently uncertain how to ensure e�ciency and safety of the re{evaluation process.7.3 Monadic style programs and I/OMonadic programming poses a problem for the declarative debugging technique. Sparud [20] proposes thatdeclarative debugging, in the style discussed in this paper, is incompatible with monadic programmingbecause the use of monads builds a new language on top of the lazy functional language. Certainconstructs that are hidden in the new monadic language (such as a representation of state) will beexposed by the debugger. Determining the correctness of the hidden constructs may be di�cult orimpossible for the oracle.In Haskell, I/O is performed using the I/O monad. As we demonstrated in section 4.3, the errordiagnosis stage of the debugger uses the I/O monad to interact with the oracle. The use of monadic I/Oin programs that are being debugged causes an additional problem for the debugging technique, on topof the di�culties mentioned above. The I/O of the program being debugged must be threaded withinthe I/O performed by the debugger itself. Currently, there does not appear to be a simple solution forthis problem. To avoid the di�culties of monadic I/O, we assume that the debugger will only be appliedto the sub{parts of programs that do not perform I/O operations.Further research into debugging monadic programs is required. We believe that a solution to the gen-eral problem of debugging monadic style programming will assist the special case of debugging programsthat use the I/O monad.7.4 Using type analysis in the transformation of programsThe di�culty of correctly transforming higher{order functions was discussed in section 4.1.6. Currentlywe rely on the arity of functions to transform curried function de�nitions and curried applications. Incases where type signatures are not available, the arity information may be incorrect, leading to errorsin the transformed code. More exact type information about expressions in the original program wouldgreatly assist the transformation of higher{order functions. In future versions of Buddha we hope tomake use of type inference to supply the required type information, which may be obtainable from thetype analysis stage of the underlying language implementation.7.5 Improving the interaction with the oracle, and alternative uses of theEDTThe current interaction between the debugger and the oracle is rather naive:� Large representations of arguments and results of functions are printed in full, which can be bothannoying and confusing for a human oracle.� Where functions are repeatedly applied to the same arguments in the original program, the debuggerwill repeatedly ask (redundant) questions about the correctness of the same application.34

� Questions are asked about the application of functions which are previously known to be correcton all (or a subset of) their inputs.� The oracle must know the intended meaning of all applications made in a program, and so mustalways be able to answer either yes or no to the questions presented to it by the debugger.In future versions of Buddha we hope to remedy these failings and provide a more
exible and usableinterface to the debugger. In particular we hope to provide the following improvements: a browsingmechanism to allow the incremental presentation of large data structures; a mechanism for rememberingthe questions that have been previously asked by the debugger so that they are not repeated; the abilityto make assertions about functions which are considered correct on all (or a subset of) their inputs toreduce or eliminate questions asked about their application; and the provision of a don't know responsewhich allows the oracle to indicate that it is uncertain about the correctness of an application, allowingthe debugging session to proceed further in the hope that more certain errors may be located.Previously in section 3.3, we made the observation that the EDT generated by the transformedprogram may be useful for tasks other than debugging programs. In particular, rather than determinethe correctness of applications, users may simply want to browse through the EDT to view the applicationsmade in an execution of the program. This may be done to obtain a greater understanding of the program,or perhaps to gain a high{level pro�le of its execution. We could provide a browsing mode in the debuggerwhich simply allows the user to interactively traverse the EDT in any order they choose, or perhaps agraphical representation of the EDT, which could also be used in combination with the error diagnosisalgorithm.238 ConclusionDeclarative debugging is a proven method for developing systems that assist the location of bugs inprograms written in relational languages. The adaption of declarative debugging techniques to functionallanguages is an active area of research. Laziness, referential transparency and strong static type systemsare features which make the implementation of declarative debuggers di�cult in pure lazy functionallanguages.We have demonstrated the implementation of Buddha, a declarative debugger for the programminglanguage Haskell. Our implementation demonstrates the suitability of the Naish and Barbour declarativedebugging technique, and shows how it can be extended to incorporate typical syntactic constructs ofmodern functional languages. We have illustrated how the required low{level primitives of the techniquecan be implemented within the Hugs environment, and we have increased the ability of the technique tosupport higher{order functions.As a prototype system, Buddha provides a sound basis upon which a more complete debuggingsystem for Haskell may be built. Complete support for higher{order programming and improved memoryconsumption are two main extensions described in this report that will be included in future versions ofthe debugger.AcknowledgementsI would like to thank Lee Naish for supervising this project. Without his wisdom, support and encour-agement none of the work presented in this paper would have been possible. I would like to thank HaraldS�ndergaard for introducing me to the Haskell programming language, and for encouraging me to pursuea project in functional programming languages. I would like to thank my parents, Jan and Brian, for sup-porting me through my undergraduate career, and providing me with endless inspiration and guidance.23Techniques for applying graphical interfaces to declarative debuggers for lazy functional languages are described in [22]and [20]. 35

The implementation of Buddha was greatly assisted by the valuable advice of Alistair Reid regarding theimplementation of Hugs, and by the Haskell parser and arity analyser written by Miles Hannan.Bibliography[1] Kishon A and P. Hudak. Semantics directed program execution monitoring. Journal of FunctionalProgramming, 5(4):501{574, 1995.[2] C. Hall and J. O'Donnell. Debugging in a side e�ect free programming environment. In Proceedings ofthe ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments, volume 20,pages 60{68, Washington, USA, 1985.[3] M. Hannan. Debugging systems for lazy functional languages. Master's thesis, Schools of ElectricalEngineering and Computer Science and Engineering, The University of New South Wales, 1995.[4] P. Hudak, J. Peterson, and J. Fasel. A gentle introduction to Haskell, version 1.4.http://www.haskell.org/tutorial/index.html.[5] J. Hughes. Why functional programming matters. The Computer Journal, 32, 1989.[6] M. Jones. The implementation of the Gofer functional programming system. Technical report, YaleUniversity, Department of Computer Science, Connecticut, USA, 1994.[7] J. Lloyd. Foundations of Logic Programming. Springer{Verlag, New York, 1984.[8] J. Lloyd. Declarative error analysis. New Generation Computing, 5(2):133{154, 1987.[9] L. Naish. A declarative debugging scheme. Journal of Functional and Logic Programming, 1997(3),April 1997.[10] L. Naish and T. Barbour. A declarative debugger for a logical-functional language. In GrahamForsyth and Moonis Ali, editors, Eighth International Conference on Industrial and EngineeringApplications of Arti�cial Intelligence and Expert Systems | Invited and Additional Papers, volume 2,pages 91{99, Melbourne, 1995. DSTO General Document 51.[11] L. Naish and T. Barbour. Towards a portable lazy functional declarative debugger. AustralianComputer Science Communications, 18(1):401{408, 1996.[12] H. Nilsson. A declarative approach to debugging for lazy functional languages. Master's thesis,Link�oping University, 1994.[13] H. Nilsson and P. Fritzson. Lazy algorithmic debugging: Ideas for practical implementation. InP. Fritzson, editor, Automated and Algorithmic Debugging, volume 749 of Lecture Notes in ComputerScience, pages 117{134, Link�oping, Sweden, 1993.[14] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages. Journal of Func-tional Programming, 4(3):337{370, 1994.[15] H. Nilsson and J. Sparud. The evaluation dependence tree: an execution record for lazy func-tional debugging. Technical report, Department of Computer and Information Science, Link�opingUniversity, 1996.[16] J. Peterson, K. Hammond, L. Augustsson, B. Boutel W. Burton, J. Fasel, A. Gordon, J. Hughes,P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. Peyton Jones, A. Reid, and P. Wadler. Haskell 1.4Language Report. http://haskell.systemsz.cs.yale.edu/onlinereport/.36

[17] A. Sabry. What is a purely functional language? Journal of Functional Programming, 8(1):1{22,1998.[18] E. Shapiro. Algorithmic Program Debugging. The MIT Press, 1982.[19] J. Sparud. Towards a Haskell debugger. Technical report, Chalmers University of Technology,Department of Computer Science, G�oteborg, Sweden, 1995.[20] J. Sparud. A transformational approach to debugging lazy functional programs. Master's thesis,Chalmers University of Technology, G�oteborg, Sweden, 1996.[21] J. Sparud and H. Nilsson. The architecture of a debugger for lazy functional languages. InM. Ducass�e, editor, Proceedings of AADEBUG'95, Saint-Malo, France, 1995.[22] R. Westman and P. Fritzson. Graphical user interfaces for algorithmic debugging. In P. Fritzson,editor, Lecture Notes in Computer Science, volume 749, pages 273{286. Springer, May 1993.

37

A Example transformed guarded equationBelow is the transformed version of the insert function from �gure 13, along with the code necessary tosupport its operation.insert x (y:ys)| isaMatch matched = (v0, t0)wherev0 = getValue matchedchildren = getChildren matched(gval0, gtree0) = gt x yeval0 = y : eval1(eval1, etree1) = insert x ysgval2 = x < yeval2 = x : y : ysgval3 = otherwiseeval3 = y : ysmatched = guards [(gval0, [gtree0], eval0, [etree1]), \(gval2, [], eval2, []), (gval3, [], eval3, [])]t0 = Node "insert" [dirt x, dirt (y : ys)] (dirt v0) children "insert ..."-- these functions are used to support the transformed equationisaMAtch :: Maybe a -> BoolisaMatch Nothing = FalseisaMatch (Just _) = TruegetChildren :: Maybe (a, [Tree]) -> [Tree]getChildren Nothing = []getChildren (Just (_, ts)) = tsgetValue :: Maybe (a, [Tree]) -> agetValue (Just (val, _)) = val

38

B Transformation and debugging session for a buggy version oftakeBelow is a buggy version of the function take. The bug is due to the de�nition of the function isZero,which should read \isZero x = x == 0".take n as| as == [] = []| isZero n = []| otherwise = hd as : (take (n-1) (tl as))hd (a:as) = atl (a:as) = asisZero x = x == 1Using the transformation described in this paper we get the following code:take n as| isaMatch matched = (v0, t0)wherev0 = getValue matchedchildren = getChildren matchedgval10 = as == []eval10 = []gval20 = gval21(gval21, gtree21) = isZero neval20 = []gval30 = otherwiseeval30 = eval31 : eval33(eval31, etree31) = hd as(eval32, etree32) = tl as(eval33, etree33) = take (n - 1) eval32matched = guards [(gval10, [], eval10, []), (gval20, [gtree21], eval20, []),\(gval30, [], eval30, [etree31, etree32, etree33])]t0 = Node "take" [dirt n, dirt as] (dirt v0) children "take ..."hd (a:as)= (v0, t0)wherev0 = at0 = Node "hd" [dirt (a : as)] (dirt v0) [] "hd ..."tl (a:as)= (v0, t0)wherev0 = ast0 = Node "tl" [dirt (a : as)] (dirt v0) [] "tl ..."
39

isZero x= (v0, t0)wherev0 = x == 1t0 = Node "isZero" [dirt x] (dirt v0) [] "isZero ..."An example debugging session is given below where the (transformed) function take is applied to anin�nite list of numbers.buddha (take 3 [1..])final result = [1, 2]take 3 [1, 2, 3, ...?] = [1, 2]Correct - Y/N/Q? nhd [1, 2, 3, ...?] = 1Correct - Y/N/Q? ytl [1, 2, 3, ...?] = [2, 3, ...?]Correct - Y/N/Q? ytake 2 [2, 3, ...?] = [2]Correct - Y/N/Q? nhd [2, 3, ...?] = 2Correct - Y/N/Q? y

tl [2, 3, ...?] = [3, ...?]Correct - Y/N/Q? ytake 1 [3, ...?] = []Correct - Y/N/Q? nisZero 1 = TrueCorrect - Y/N/Q? nThe erroneous node is:isZero 1 = TrueThe erroneous equation is:isZero x = x == 1

40

